

Cite this article as: Rare Metal Materials and Engineering, 2018, 47(10): 2976-2979.

ARTICLE

ImprovedCritical Current Density and Magnetic Properties of Pr₆O₁₁-doped MgB₂ Bulks Synthesized by Mg-diffusion Method

Shao Hui¹, Shan Di¹, Pan Xifeng², Yan Guo², Wang Qingyang³, Xiong Xiaomei³

¹ Xi'an University of Technology, Xi'an 710048, China; ² National Engineering Laboratory for Superconducting Materials, Western Superconducting Technologies Co., Ltd, Xi'an 710018, China; ³ Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China

Abstract: The effects of the addition of Pr_6O_{11} nanopowder on the critical current density (J_c), irreversible field (H_{irr}) and upper critical field (H_{c2}) of the MgB₂ bulks prepared by a Mg-diffusion method were investigated. The results show that the Pr_6O_{11} nanopowder doping can significantly enhance the J_c , H_{irr} and H_{c2} of the MgB₂ bulks, but has little effect on the superconducting transition temperature (T_c). At 20 K in a self-field, the J_c value of the 1 wt% Pr_6O_{11} -doped MgB₂ sample is 3.61×10^5 A/cm², which is nearly 5 times larger than that of the undoped sample. In addition, at 10 K, the H_{c2} and H_{irr} of the bulk increase by 1.9 and 2.6 T, respectively. The effect of Pr_6O_{11} -doping on superconductivity and flux pinning mechanism was also discussed.

Key words: MgB₂; Pr₆O₁₁ doping; critical current density; magnetic property

The discovery of superconductivity at 39 K in the MgB₂ compound has aroused a great interest in the field of applied superconductivity^[1]. Extensive efforts have been made to improve the J_c , H_{irr} and H_{c2} of the materials, so that they can beappli ed to strong magnetic fields at 20 K. Experimental results have revealed that although grain boundaries are transparent to the current flow in MgB₂ $^{[2,3]}$, J_c drops rapidly as the strength of the magnetic field increases due to the lack of flux pinning centers and the poor connectivity between the material grains. Chemical doping has been considered as an effective and readily scalable technique for introducing pinning centers and improving J_c . Nanosized oxide inclusions including Al₂O₃, SiO₂, Y₂O₃, Dy₂O₃, Pr₆O₁₁, and TiO₂, have been reported to enhance the flux pinning in MgB₂^[4-8]. It has been found that nanosized coherent oxides can act as effective pin ning centers in MgB₂ materials^[9,10], but large grains or high quantity of oxide evidently impair the grain connectivity.

 MgB_2 bulks synthesized from a powder mixture of magnesium and boron under ambient pressure are usually porous with only 50% of theoretical density. Therefore, it is

evident that the poor self-sintering nature of MgB₂ grains results in a large amount of holes in the material, leading to low density. There are several methods to produce highly dense MgB₂ samples without using any high pressure techniques, such as diffusion of magnesium into boron fibers^[11], infiltration of powder boron^[12] and liquid magnesium into the powder-in-closed-tube (PICT)-diffusion method^[13,14]. The PICT-diffusion method has several advantages, including easy procedures and elimination of the MgO contamination. Ueda et al^[11] has reported that a high critical current density (~0.86 MA/cm² at 20 K in self-field) can be achieved by the diffusion method, but it is found that the J_c value decreases as the strength of the resident magnetic field increases, and the J_c drops faster than that in the materials prepared by the solid-state reaction route. Therefore, we attempted to improve the J_c and magnetic properties of the MgB₂ bulks through a combination of nanopowder doping and the Mg-diffusion method.

1 Experiment

A series of Pr₆O₁₁-doped MgB₂ samples with a mass ratio of

Received date: October 25, 2017

Foundation item: National Natural Science Foundation of China (51501150); Programs from Xi'an University of Technology (108-451016007)

Corresponding author: Shan Di, Candidate for Ph. D., Xi'an University of Technology, Xi'an 710048, P. R. China, Tel: 0086-29-82312038, E-mail: shandigood@163.com

Copyright © 2018, Northwest Institute for Nonferrous Metal Research. Published by Elsevier BV. All rights reserved.

 $MgB_2:Pr_6O_{11}=1-x:x$ (x=0, 0.005, 0.01, 0.03) were prepared using the Mg-diffusion method under ambient pressure. The powders consisting of B (amorphous, purity 99.9%), Mg (purity 99%) and Pr_6O_{11} (purity 99.9%, particle size 100 nm), were mixed and pressed into cylinders with a diameter of 6 mm under a pressure of 4 MPa. The samples were heated at 850 °C for 24 h in a flowing Ar atmosphere and then cooled to room temperature. All of the samples had an average density of 1.77 g/cm³, which was 68% of theoretical density. The magnetic properties of the samples were measured in a temperature range of 5~45 K, using a magnetic properties measurement system (MPMS, Quantum Design) and the magnetization measurements were performed using a 4 kA/m applied field in zero-field-cooling (ZFC). The magnetic $J_{\rm c}$ was calculated from the width ΔM of the magnetization loop (*M*-*H*) using the extended Bean model: $J_c=20\Delta M/[a(1-a/3b)]$, where a and b are the dimensions of the sample perpendicular to the direction of the applied magnetic field and a < b. The H_{irr} values of the samples were determined from the closure of hysteresis loops and the criterion is $J_c = 100 \text{ A} \cdot \text{cm}^{-2}$.

2 Results and Discussion

Fig.1 shows the XRD patterns of the samples MgB₂:Pr₆O₁₁ =1–*x*:*x* (*x*=0, 0.01, 0.03). MgB₂ is the main phase in all samples. The undoped sample is composed of MgB₂ phase and a little amount of MgO. In the Pr₆O₁₁-doped samples, PrB₆ besides MgO can be identified as the impurities. With the increase of the Pr₆O₁₁ doping level, the intensity of the PrB₆ peak increases. The *a*- and *c*-axis parameters calculated from the XRD patterns are also shown. Compared with the undoped samples increase. The Pr ion radius is larger than the Mg ion radius, so the values of the lattice parameters become large. It is suggested that Pr substitution for Mg occurs in MgB₂ lattice.

Fig.2 shows the results of the temperature dependence of zero field cooled (ZFC) magnetization M(T) measured at 4 kA/m for the Pr₆O₁₁-doped samples. All samples exhibit a

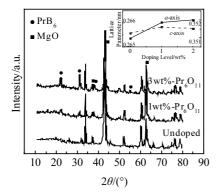


Fig.1 XRD patterns of the Pr₆O₁₁-doped MgB₂ samples after heating at 850 °C for 24 h (Inset: *a*, *c*-axis lattice parameters of MgB₂)

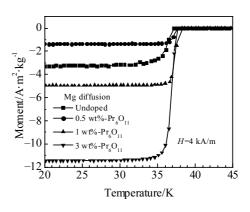


Fig.2 Temperature dependence of the magnetization measured at 4 kA/m

sharp transition. As can be seen, the highest transition temperature of the 1 wt% Pr₆O₁₁-doped sample is 38.3 K, while the lowest transition temperature of the undoped sample is 36.3 K and others are 37.6 K. Pan et al^[6] reported that T_c is barely inhibited in the sample doped with nano-Pr₆O₁₁ particles, and the pair-breaking effect of the magnetic moment of the rare-earth element is not significant in MgB₂. Therefore, in this work, the T_c increase in the Pr_6O_{11} doped samples may be attributed to the diversity of the quality in various samples, rather than the effect of the Pr₆O₁₁ doping. On the other hand, the diamagnetic signal varies significantly with the doping levels. When the low doping levels $x \le 0.5$ wt%, the diamagnetic signal is small which may be attributed to low density, although the phase of the samples is relatively pure. With increasing doping level, the Pr₆O₁₁ doping helps to increase the nucleation rate of MgB₂, thereby increasing the density and quantity of MgB₂. When the doping level $x \ge 1$ wt%, the samples have a higher density, and although the MgB₂ phase has more impurities, the diamagnetic signals are enhanced at the same time.

Fig.3 presents the variation of the J_c for the samples with magnetic field strength at 10 and 20 K. The J_c values of the MgB₂ bulks prepared by the Mg-diffusion method are obviously improved when the materials is doped with Pr_6O_{11} nanoparticles, especially in a stronger field. The J_c value of the undoped sample and the 1 wt% Pr₆O₁₁-doped sample is 6.0×10^4 A/cm² and 3.12×10^5 A/cm² at 10 K in 1 T, respectively. At 20 K in a self-field, the J_c value of 1 wt% Pr₆O₁₁-doped is 3.61×10^5 A/cm², whereas this value is only 7.23×10^4 A/cm² for the undoped bulk, which is an increase of a factor of 5. Furthermore, Fig.3a also shows the $J_c-\mu_0 H$ curves of the undoped and 1 wt% Pr₆O₁₁-doped MgB₂ bulks prepared by a solid-state reaction route. As can be seen, the J_c of the samples prepared by the Mg-diffusion method in the low filed exhibits much better performance than that of the samples prepared using the solid state method^[15]. Therefore, the combination of Mg-diffusion and the Pr₆O₁₁ nanoparticles doping method may

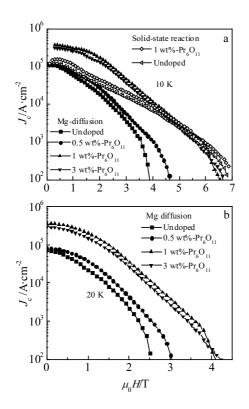


Fig.3 Magnetic field dependence of the critical density J_c properties at 10 K (a) and at 20 K (b)

be an underlying route for improving the superconducting peformance of MgB₂.

Fig.4 shows the temperature dependence of H_{c2} and H_{irr} obtained from the magnetic hysteresis measurements. The parameter H_{irr} is determined from the closure of hysteresis loops with a criterion of $J_c=100 \text{ A} \cdot \text{cm}^{-2}$. The H_{c2} is determined from the point at which the magnetization begins to deviate from the normal linear background. A systematic increase in the H_{c2} and H_{irr} is clearly observed for the Pr_6O_{11} doped samples. For the 1 wt% Pr_6O_{11} -doped sample, the H_{irr} and the H_{c2} are 6.5 T and 7.5 T at 10 K, respectively, which is increased by 2.6 T and 1.9 T compared to those of the undoped sample (3.9 T and 5.6 T), respectively. The H_{irr} and H_{c2} values increase with the increase of Pr_6O_{11} content. When the maximum quantity of Pr_6O_{11} is 3 wt%, the maximum values of H_{irr} and H_{c2} reach 6.7 and 8.1 T, respectively.

Fig.5 shows the pinning force as a function of applied magnetic field. In Fig.5a, a remarkable and systematic improvement in the pinning force can be seen in the Pr_6O_{11} -doped samples. The maximum pinning force F_p per volume unit for the 1 wt% Pr_6O_{11} -doped sample is 4 times larger than that in the undoped sample. Fig.5b shows the reduced field dependence of the normalized flux pinning force ($F_p/F_{p,max}$). The peaks in the Pr_6O_{11} -doped samples shift to higher field strengths and are much broader than those in the undoped sample, mainly denoted in the higher field, indicating that the

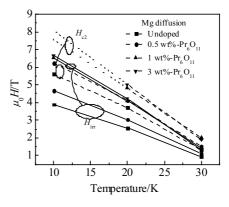


Fig.4 Temperature dependence of the irreversibility field H_{irr} and upper critical field H_{c2}

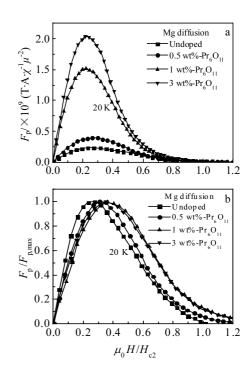


Fig.5 Flux pinning force as a function of applied magnetic field at 20 K: (a) flux pinning force F_p and (b) normalized flux pinning force $F_p/F_{p,max}$

pinning strength is improved in the higher field region. Therefore, the improvement of the MgB₂ properties can be explained by the doping of Pr_6O_{11} , which appears to increase the flux pinning force. Pan et al^[6] has reported that Pr_6O_{11} nanoparticles in the MgB₂ samples are decomposed to form PrB_6 as revealed by XRD analysis. A partial substitution of Pr for Mg in MgB₂ crystal structure causes improved flux pinning behavior.

As well known, the behavior of J_c in MgB₂ bulks is influenced by both the flux pinning force and sample density. In this work, a series of highly compact MgB₂ samples with an average density of 1.77 g/cm³ were prepared by the Mg-diffusion method, while the usual density of MgB₂ bulks prepared by the standard solid-state reaction route at ambient pressure is 1.2 g/cm³. A small amount of holes in the MgB₂ bulks prepared by the Mg-diffusion method caused an increase in the effective cross section for superconducting current, so the improved density is favorable for enhancing the J_c in MgB₂ bulks.

3 Conclusions

1) A series of Pr_6O_{11} -doped MgB₂ samples with various doping levels can be prepared using the Mg-diffusion method at ambient pressure, which have an averagede nsity of 1.77 g/cm³.

2) The J_c , H_{irr} and H_{c2} in the Pr_6O_{11} -doped MgB₂ bulks increase significantly, but the T_c is not affected. The J_c reaches a maximum value in the 1 wt% Pr_6O_{11} -doped sample, and the 3 wt% Pr_6O_{11} -doped MgB₂ sample exhibits the maximum H_{irr} and H_{c2} values.

3) The combination of Pr_6O_{11} nanoparticles doping and the Mg-diffusion method can be an underlying pathway for improving the MgB₂ superconducting performance.

References

- Nagamatsu J, Nakagawa N, Muranaka T. *Nature*[J], 2001, 410:
 63
- 2 Eisterer M, Müller R, Schöppl R *et al. Supercond Sci Technol*[J], 2007, 20(3): 117

- 3 Matsushita T, Kiuchi M, Yamamoto A et al. Supercond Sci Technol[J], 2007, 21(1): 15 008
- 4 Onar K, Balci Y, Yakinci M E. Journal of Materials Science: Materials in Electronics[J], 2014, 25(5): 2104
- 5 Li G Z, Sumption M D, Rindfleisch M A et al. Applied Physics Letters[J], 2014, 105(11): 112 603
- 6 Pan X F, Shen T M, Li G et al. Physica Status Solidi (a)[J], 2007, 204(5): 1555
- 7 Cheng C, Zhao Y. *Applied Physics Letters*[J], 2006, 89(25): 252 501
- 8 Prokhorov V G, Svetchnikov V L, Park J S et al. Supercond Sci Technol[J], 2009: 22(4): 45 027
- 9 Zhu Y, Voyles M. MgB₂ Superconducting Wires: Basics and Applications[M]. Singapore: World Scientific, 2016: 77
- 10 Snezhko A, Prozorov T, Prozorov R. *Physical Review B*[J], 2005, 71(2): 24 527
- 11 Ueda S, Shimoyama J I, Iwayama I et al. Applied Physics Letters[J], 2005, 86(22): 222 502
- 12 Bhagurkar A G, Yamamoto A, Anguilano L. Supercond Sci Technol[J], 2016, 29(3): 35 008
- Hossain A, Shahriar M. Supercond Sci Technol[J], 2017, 30(1): 10 501
- 14 Brunner B, Reissner M, Kulich M et al. IEEE Transactions on Applied Superconductivity[J], 2016, 26(3): 1
- 15 Kováč P, Hušek I, Melišek T et al. Supercond Sci Technol[J], 2014, 27(6): 65 003

镁扩散法制备 Pr₆O₁₁掺杂的 MgB₂块体的临界电流密度和磁场性能

邵 晖¹, 单 迪¹, 潘熙锋², 闫 果², 王庆阳³, 熊晓梅³
(1. 西安理工大学, 陕西 西安 710048)
(2. 西部超导材料科技股份有限公司 超导材料制备国家工程实验室, 陕西 西安 710018)
(3. 西北有色金属研究院, 陕西 西安 710016)

摘 要:采用镁扩散法制备了 Pr₆O₁₁纳米颗粒掺杂的 MgB₂超导块体,研究了 Pr₆O₁₁ 掺杂对其临界电流密度(*J*_c),不可逆磁场(*H*_{irr})和上临 界磁场(*H*_{c2})的影响。实验结果表明, Pr₆O₁₁ 纳米颗粒掺杂明显提高了块体的 *J*_c, *H*_{irr}和 *H*_{c2}, 但没有降低其超导转变温度 *T*_c。在 20 K 自 场条件下,质量分数为 1% Pr₆O₁₁ 掺杂 MgB₂块体的 *J*_c为未掺杂样品的近 5 倍,*J*_c=3.61×10⁵A/cm²。在 10 K 温度下,MgB₂块体 *H*_{c2}和 *H*_{irr}较未掺杂样品分别提高了 1.9 和 2.6 T。同时讨论了 Pr₆O₁₁ 纳米颗粒掺杂对 MgB₂块体的超导性能和磁通钉扎机制的影响。 关键词: MgB₂; Pr₆O₁₁ 掺杂;临界电流密度;磁场性能

作者简介: 邵 晖, 男, 1983 年生, 博士, 西安理工大学材料学院, 陕西 西安 710048, 电话: 029-82312038, E-mail: shaohui@xaut.edu.cn