ZL205A电弧熔丝增材制造堆积体的组织与性能

王帅¹, 顾惠敏¹, 王伟², 李承德¹, 任玲玲¹, 王振飚³, 翟玉春^{1,3}, 马培华¹

(1. 东北大学,辽宁 沈阳 110004)(2. 中国兵器科学研究院宁波分院,浙江 宁波 315103)(3. 抚顺东工冶金材料技术有限公司,辽宁 抚顺 113200)

摘 要:用电弧熔丝增材制造技术(wire arc additive manufacturing, WAAM)进行 ZL205A 铝合金的堆积实验。通过金相、SEM、EDS 及拉伸试验,考察堆积体的微观组织和力学性能,并与金属型铸造试样进行对比。结果发现,堆积体厚度均匀,表面平整,堆积体中元素 B 和 Cd 的烧损率分别达到 59.8%和 50.2%。与金属型铸造铸态试样相比较,WAAM 直接堆积态晶粒大小更均匀,晶粒尺寸更小,析出相在晶内和晶界上均匀分布。T6 热处理后, θ 相完全固溶到 Al 基体中,在晶界上均匀分布着复熔 T 相,堆积体 T6 的抗拉强度达到 500 MPa,屈服强度为 450 MPa,延伸率为 10%,均高于金属型铸造试样的水平,且试样在横纵 2 个方向上力学性能一致。

关键词:电弧熔丝增材制造(WAAM); ZL205A 铝合金; 微观组织; 力学性能
中图法分类号: TG47;TG146.21
文献标识码: A
文章编号: 1002-185X(2019)09-2910-07

ZL205A 是我国自主研发的高强铸造铝合金,是目前工业应用中强度最高的铸造铝合金^[1],实现了以铸代 锻,以铝代钢,为主承力结构件的轻量化提供了条件。 然而由于该合金结晶温度范围宽,在铸造过程中容易产 生偏析^[2]、热裂^[3,4]、缩孔缩松^[5]等缺陷,铸造性能差, 铸件的成品率低,并且该合金焊接性能差,出现铸造缺 陷难以修补,限制了 ZL205A 铝合金的使用。

电弧熔丝增材制造(WAAM)技术以电弧作为热 源,以焊丝作为原材料,在保护气氛下逐层堆积形成 实体。与高能束+金属粉末的增材制造技术相比^[6-9], 虽然 WAAM 技术^[10-15]产品表面平整度略有降低,但 是它具有堆积速率快,产品尺寸不受限制等优点。近 年来,研究人员分别考察了Al-5Mg^[16]、Al-Mg-Si^[17]、 Al-6.3Cu^[18]、Al-Cu-Mg^[19]等合金体系成形表面质量及 堆积体的组织与性能,并通过层间轧制等机械变形的 方式提高堆积体的力学性能。由于原材料的限制,大 部分研究针对形变合金,这些合金体系堆积体性能偏 低,且在横向和纵向上力学性能存在差异。

本实验以 ZL205A 铝合金为研究对象,采用冷金 属过渡焊接技术(cold metal transfer, CMT)的弧焊电源 进行堆积,考察堆积体的组织和性能。为 ZL205A 铝 合金电弧熔丝增材制造的应用打下基础。

1 实 验

本实验所用的 ZL205A 铝合金焊丝由抚顺东工冶 金材料技术有限公司生产,直径为 1.2 mm,焊丝的主 要合金元素化学成分(质量分数)如表 1 所示,符合企 业标准《Q/FSDG002-2018》,同时满足《GB/T 1173-2013》。以厚度为 10 mm 的 2219 铝合金板作为 增材底板。

增材制造系统主要包括 Fronius Advance400 弧焊 电源和 ABB 1410 焊接机器人。增材制造过程如图 1 所示, *x* 轴对应堆积体的正面; *y* 轴为热源的移动方向, 对应堆积体的横向; *z* 轴为增长方向,对应堆积体的 纵向。

打印参数如表 2 所示。按照《GB/T 1173-2013》 的要求对堆积体进行 T6 热处理,热处理工艺为:固 溶温度 538 ℃、固溶时间 600 min、淬火温度 40 ℃、 时效温度 175 ℃、时效时间 240 min。

堆积体的化学成分由 OXFORD 电火花直读光谱 仪测试,采用 WDW-300 微控电子万能试验机进行力 学性能测试,采用 LEICA MEF4M 金相显微镜和

|--|

Table 1	Chemical composition of raw material (ω /%)								
Element	Cu	Mn	Ti	Cd	Zr	В	V		
Content	5.15	0.42	0.28	0.22	0.16	0.03	0.12		

收稿日期: 2018-09-10 基金项目: 国家重点研发计划重点专项 (2018YFB1106300-5)

作者简介: 王 帅, 男, 1991年生, 博士生, 东北大学冶金学院, 辽宁 沈阳 110004, E-mail: 1061238079@qq.com

图 1 增材制造系统堆积体坐标定义

Fig.1 Definition of coordinates for wall produced by additive manufacture system

表 2 打印参数 Table 2 Print parameters

I/A	U/V	$v_{\rm WFS}/{\rm m\cdot min^{-1}}$	$v_{\rm TS}/{\rm m}\cdot{\rm min}^{-1}$	Cool time/s
98	11.2	6.5	8	60

QUANTA FEG 250 扫描电镜进行组织和形貌观察, 采用 EDS 进行元素和物相分析。取样位置和力学测试 试样的加工形状如图1所示。位置1和位置2分别取 纵向和横向的拉伸试样,位置3处取金相试样,分别 考察堆积体3个截面的微观组织。拉伸试样加工成板 形,标距为30mm,横截面积为2.5mm×10mm。

结果与讨论 2

2.1 表面形貌

堆积体的表面如图 2 所示。从正面和侧面看,堆 积体表面较为平整,在纵向上除靠近底板的几层外, 厚度的一致性保持的较好。靠近底板的 4~5 层堆积体 表面凹凸不平,是因为底板温度过低,熔池冷却速度 过快、流动性差,所以在电弧熔丝增材制造的生产中 应对底板进行预热。堆积体表面显示出周期性的凹凸 纹路,可以区分出每个独立堆积层。

2.2 化学成分

Burn-out rate/%

堆积体中合金元素的化学成分及其烧损率如表 3 所示。由表 3 可见元素 B 和 Cd 的烧损率最大,分别

5.2

4.7

达到了 59.8%和 50.2%, 其余元素的烧损率在 10%以 内, 仅有 Cd 元素的含量低于标准要求。在生产电弧 熔丝增材制造专用铝合金丝材时,应考虑各元素的烧 损率,适当调整各元素的化学成分,使增材制造的产 品满足《GB/T 1173-2013》的标准要求。由于元素 Cd 烧损严重,应寻求替代合金元素。

2.3 微观组织

2.3.1 堆积态的微观组织

金属型铸造试样的铸态组织和 WAAM 堆积态组 织如图 3 所示。由图 3a 可见,金属型铸造试样的晶粒 尺寸约为 80 µm,尺寸差异较大。由图 3b、3c、3d 可 见,堆积体 x、y、z3个方向截面的晶粒尺寸一致,约 为40 µm。与金属型铸造试样相比,堆积体的晶粒尺 寸减小,且晶粒大小更均匀。这主要是由于液相金属 凝固速度快,且电弧对熔池具有搅动作用,其凝固过 程为动态凝固。

从图 3a 金属型铸造试样的微观组织中可见大量 形状不规则的孔洞,尺寸在 20~40 µm,这是液态金属

图 2 堆积体表面形貌 Fig.2 Surface morphology of wall

0

59.8

3.6

	Table 3 Chemical composition of wall and burn-out rate for each element							
Element	Cu	Mn	Ti	Cd	Zr	В	V	Al
Standard content, ω/% GB/T 1173-2013	4.6~5.3	0.3~0.5	0.15~0.35	0.15~0.25	0.15~0.25	0.005~0.6	0.05~0.3	Bal.
Actual content, ω /%	4.88	0.40	0.254	0.107	0.158	0.0101	0.118	-

9.3

表 3 堆积休的化学成分及各元素的烧损率

50.2

图 3 ZL205A 铝合金金属型铸造铸态微观组织和 WAAM 堆积态微观组织

Fig.3 Microstructure of the metal mold cast (a) and as-deposited WAAM ZL205A aluminum alloy ($b\sim d$): (b) x section, (c) y section, and (d) z section

凝固过程产生的缩孔。这些孔洞带有尖角,在结构件 使用过程中容易产生应力集中,成为疲劳断裂的裂纹 源。在图 3b 堆积体 x 方向截面上,可见尺寸在 10~20 µm 之间的圆形孔洞,这是增材过程产生的微气孔。这些 气孔与基体界面过渡圆滑,对力学性能影响较小。微 气孔只出现在 x 方向截面,即接近堆积体表面的位置, 而在图 3c、3d 中,堆积体的内部没有发现微气孔,可 见微气孔产生于堆积行进方向两侧熔池边缘,是由于 此处气体保护不足造成的。

铸造试样的析出相集中在晶界上,呈不连续的 网状分布,有偏聚现象,晶内析出相少,如图 3a 所 示。由图 3b、3c、3d 可见,堆积体的析出相在 x、y、 z 3 个方向的数量、大小和分布是一致的。与铸造试 样相比,析出相尺寸大大减小,在晶界上均匀分布 或在晶内弥散分布,没有明显的偏聚现象,晶内弥 散分布析出相的数量远多于铸造组织。结合图 4 堆 积体的 SEM 和 EDS 分析。灰色组织为基体,是固 溶少量铜的 α-Al,如图 4a 所示。析出相主要是 θ 相 (Al₂Cu)、T 相 (Al₁₂CuMn₂)、Cd 及 Al₃Ti等, 如图 4b、4c、4d 所示。总体看来,ZL205A 铝合金 WAAM 堆积态组织,相对于铸态铸造试样,在析出 相的组成上并没有变化,只是析出相的尺寸更加细 小,分布更加均匀。这主要是因为 WAAM 液相金属 的凝固速度快,大量的析出相来不及聚集,呈弥散

分布。

2.3.2 T6 态的微观组织

金属型铸造试样和堆积体 T6 热处理后的微观组 织如图 5 所示。由图 5a 可见,铸造试样的晶粒尺寸在 80 μm 左右,尺寸差异较大,和热处理前的晶粒大小 及均匀性相同。堆积体 3 个截面 T6 热处理后的晶粒 尺寸基本一致,与堆积态的晶粒尺寸相同,约为 40 μm。与铸造试样相比,堆积体的晶粒尺寸更小, 均匀性更好。气孔在热处理前后也没有明显的变化, 气孔的尺寸和形状与热处理之前一致。

T6 热处理后晶界上析出相的数量明显减少,这是 由于 θ 相(Al₂Cu)在固溶处理时,溶解到基体当中。 对于铸造试样,如图 5a 所示,在晶界上仍然有聚集析 出相的存在,并且分布不均匀。在堆积体 T6 处理后 的微观组织中,如图 5b、5c、5d 所示,在晶界上有弥 散分布的析出相,且析出相在堆积体3个截面的分布 状况一致。结合 EDS 能谱分析,铸造试样的晶界上除 了有复熔 $T(Al_{12}CuMn_2)$ 相的存在,还有未溶解的 θ 相 (Al₂Cu), 如图 6a、6b 所示。而在堆积体的晶界上只 有复熔 T 相的存在, 如图 6c、6d 所示, 呈长条状或片 状。这是由于堆积体热处理之前晶界上析出 θ 相的尺 寸小于铸造组织,并且没有偏聚的现象,所以θ相与 基体的接触面积较大,在固溶处理时,扩散速度快, 更容易溶解在基体中。这些固溶在基体中的 θ 相,在 时效过程中能够形成更多的 GP 区, θ' 和 θ'' 相, 有利 于提高合金的力学性能。

图 4 ZL205A 铝合金 WAAM 堆积态 SEM 照片及 EDS 分析

Fig.4 SEM images and EDS analyses of the as-deposited WAAM ZL205A aluminum alloy: (a) θ phases, (b) θ phases, (c) T phases, and (d) Cd phases

图 5 ZL205A 铝合金金属型铸造 T6 态微观组织和 WAAM T6 态微观组织

Fig.5 Microstructure of T6 heat treated metal mold cast specimen (a) and T6 heat treated WAAM ZL205A aluminum alloy at different positions ($b\sim d$): (b) x section, (c) y section, and (d) z section

图 6 T6 热处理后 ZL205A 铝合金铸造试样和堆积体的 SEM 和 EDS 分析

Fig.6 SEM images and EDS analyses of the T6 heat treated metal mold cast specimen and T6 heat treated WAAM ZL205A aluminum alloy: (a) θ phases, (b) T phases, (c) T phases, and (d) T phases

2.4 力学性能和断口形貌

2.4.1 力学性能

取如图 1 所示试样进行力学性能测试,测试结果 如图 7 所示。图中对比了 T6 热处理后 WAAM 堆积 体横向试样、纵向试样和金属型铸造试样的力学性能。 可见,WAAM 试样的抗拉强度 500 MPa,屈服强度 450 MPa,延伸率 10%,强度和塑性均高于铸造试样,其 中抗拉强度提高 20 MPa,屈服强度提高 15 MPa,延 伸率提高 100%。力学性能的改善首先是 WAAM 液相 金属凝固速度快,晶粒细小、强化相分布均匀的缘故; 其次是固溶处理时 θ 相完全溶解到基体当中,时效时 析出强化相的数量更多。

2.4.2 断口形貌

拉伸试样的断口形貌如图 8 所示。由图 8a、8b 可见,堆积体横向和纵向的断口形貌基本一致,都是 由大小不等的韧窝构成,为典型的韧性断裂,在韧窝 内部有较多的小颗粒,是在晶界上弥散分布的强化相。 由图 8c 可见,金属型铸造试样的断口中,除了有一些 韧窝外,还有一些区域断口组织平滑,为解理面或准 解理面,是在外力作用下穿晶断裂造成的。

- 图 7 ZL205A 铝合金 T6 热处理后 WAAM 试样和铸造试样的 力学性能
- Fig.7 Tensile properties of the T6 heat treated WAAM ZL205A aluminum alloy of horizontal section, vertical section and casting specimen

图 8 T6 热处理 ZL205A 铝合金堆积体和铸造试样的断口形貌

Fig.8 Fracture morphology of the T6 heat treated WAAM ZL205A aluminum alloy for horizontal section (a), vertical section (b) and casting specimen (c)

堆积体在 x、y、z 方向的微观组织一致,所以在 宏观性能上试样横向和纵向的力学性能基本一致,这 和 Gu^[19]等人的研究结果不同,他们以形变合金 2219 和 2024 为原材料进行电弧熔丝增材制造,发现没有变 形处理的堆积体,横向和纵向的力学性能有差异,横 向的力学性能优于纵向。这是由于原材料的性质导致 的,ZL205A 为铸造铝合金,与形变合金相比,铸造 合金组织具有各向同性。因此,在不加后期变形处理 的情况下,铸造合金更适合电弧熔丝增材制造工艺。 WAAM ZL205A 堆积体无需变形处理,T6 处理后即可 得到优异、横纵向均匀的力学性能。

3 结 论

1) WAAM ZL205A 堆积体厚度均匀,表面平整。

2) 与金属型铸造试样铸态组织相比, WAAM ZL205A 直接堆积态组织明显细化且晶粒大小均匀, 析出相在晶内和晶界上弥散分布, 没有偏聚现象。

3) WAAM ZL205A 堆积体经固溶处理后, θ 相 (Al₂Cu)能够完全溶解到基体中,时效时析出弥散分 布的强化相。

4) WAAM ZL205A 堆积体 T6 热处理后,抗拉强度 500 MPa,屈服强度 450 MPa,延伸率 10%,均高于金属型铸造试样,且横纵向上力学性能基本一致。

参考文献 References

- [1] Jia Panjiang(贾泮江), Wang Qiang(王 强). Chinese Journal of Rare Metal(稀有金属)[J], 1999, 23(2): 153
- [2] Elisangela S M, Felipe B, Pedro R G et al. Journal of Alloys and Compounds[J], 2013, 561: 193
- [3] Eskin D G, Katgerman L. Metallurgical Materials Transaction A[J], 2007, 38A: 1511
- [4] Farup I, Drezet J M, Rappaz M. Acta Mater[J], 2001, 49: 1261

- [5] Li Bo, Shen Yifu, Hu Weiye. Materials&Design[J], 2011, 32: 2570
- [6] Syed W U H, Pinkerton A J, Li L. Applied Surface Science[J], 2005, 247: 268
- [7] Unocic R R, Dupont J N. Metallurgical Materials Transaction B[J], 2004, 35(1): 143
- [8] Gustafson C, Glad A, Rännar L. Rapid Prototyping Journal[J], 2007, 13(3): 128
- [9] Ding D, Pan Z, Cuiuri D et al. Robotics Computer-Integrated Manufacturing[J], 2015, 31: 101
- [10] Syed W U H, Pinkerton A J, Li L. *Applied Surface Science*[J], 2006, 252(13): 4803
- [11] Wang F, Mei J, Jiang H et al. Materials Science Engineering and A[J], 2007, 445(6): 461
- [12] Brandl E, Schoberth A, Leyens C. Materials Science and Engineering A[J], 2012, 532(3): 295
- [13] Martina F, Mehnen J, WWilliams S et al. Journal of Materials Processing Technology[J], 2012, 212(6): 1377
- [14] Martina F. Thesis for Doctorate[D]. Cranfield: Cranfield University, 2014
- [15] Gu J L, Ding J L, Cong B Q et al. Advances Materials Research[J], 2014, 1081: 210
- [16] Jiang Yunlu(姜云禄). Thesis for Master Degree(硕士论 文)[D]. Harbin: Harbin Institute of Technology, 2013
- [17] Qi Zewu, Qi Bojin, Cong Baoqiang et al. Materials Letters[J], 2018, 233: 348
- [18] Sun Hongye(孙红叶), Cong Baoqiang(丛保强). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(8): 2203
- [19] Gu Jianglong(顾江龙). Thesis for Doctorate(博士论文)[D]. Shenyang: Northeastern University, 2016

Wang Shuai¹, Gu Huimin¹, Wang Wei², Li Chengde¹, Ren Lingling¹, Wang Zhenbiao³, Zhai Yuchun^{1,3}, Ma Peihua¹ (1. Northeastern University, Shenyang 110004, China)

(2. Ningbo Branch of China Academy of Ordance Science, Ningbo 315103, China)

(3. Fushun Donggong Metallurgical Materials and Technology Limited Company, Fushun 113200, China)

Abstract: The wall experiments of ZL205A aluminum alloy were carried out by the wire+arc additive manufacturing technology (WAAM). The microstructure and mechanical properties of ZL205A aluminium alloy wall were investigated by metallographic, SEM, EDS and tensile tests, and they were compared with those of metal casting alloy. The results show that the thickness of the wall is uniform and the surface is smooth. Meanwhile, the burn-out rate of B and Cd in the deposit body are 59.8% and 50.2%, respectively. Compared with cast alloys at casting condition, the as-deposited WAAM ZL205A has more uniform grain size, smaller grain size and uniform distribution of precipitated phases in grains and grain boundaries. After heat treatment (T6), θ -phase is completely dissolved into Al matrix, and the re-melted *T*-phase is distributed on the grain boundary. The tensile strength, yield strength and elongation of the wall are 500 MPa, 450 MPa and 10%, respectively, which are higher than that of the metal casting alloy, and the mechanical properties of the alloy in transverse and longitudinal directions are the same.

Key words: wire arc additive manufacture (WAAM); ZL205A aluminum alloy; microstructure; mechanical properties

Corresponding author: Wang Shuai, Candidate for Ph. D., School of Metallurgy, Northeastern University, Shenyang 110004, P. R. China, E-mail: 1061238079@qq.com