# 原位粉末装管法 37 芯 MgB2 线材的制备及性能研究

王庆阳<sup>1</sup>,张可荣<sup>2</sup>,杨 芳<sup>1</sup>,熊晓梅<sup>1</sup>,称 丹<sup>3</sup>,王大友<sup>3</sup>,

李成山<sup>1</sup>, 闫 果<sup>3</sup>, 冯 勇<sup>3</sup>, 张平祥<sup>1,3</sup>

(1. 西北有色金属研究院, 陕西 西安 710016)

(2. 西藏民族大学, 陕西 咸阳 712082)

(3. 西部超导材料科技股份有限公司, 陕西 西安 710018)

**摘 要:** 以强度较高的蒙乃尔合金(Monel 400)作为包套材料,以旋锻、拉拔、轧制及中间热处理相结合的加工手段 制备出直径 1.0 mm、37 芯结构的多芯 MgB<sub>2</sub>超导长线材。微观结构分析表明多芯线材中 MgB<sub>2</sub>芯丝及替换芯丝等亚组 元的分布较为规整,阻隔层未出现明显破损现象,最终线材中 MgB<sub>2</sub>超导芯丝的平均直径约 80 μm。室温拉伸性能显示 热处理前 MgB<sub>2</sub>线材的屈服强度为 759 MPa,热处理后的线材为 248 MPa。4.2 K、4 T 下,线材的临界电流密度 *J*<sub>c</sub>达到 2.31×10<sup>5</sup> A·cm<sup>-2</sup>,工程临界电流密度达到 3.16×10<sup>4</sup> A·cm<sup>-2</sup>。

关键词: 二硼化镁; 多芯线材; 力学性能; 超导性能

中图法分类号: TM26<sup>+</sup>2 文献标识码: A 文章编号: 1002-185X(2020)08-2825-05

二硼化镁(MgB<sub>2</sub>)材料的超导电性自从 2001 发现以来,经过近 20 年的研究,已经取得了很大的进展。目前已经进入实用化研究阶段,意大利的 Columbus 公司和美国的 Hyper Tech 公司等几家单位已经进行商品化生产,所制备 MgB<sub>2</sub>线带材已成功地应用到磁共振成像仪(MRI)、超导电缆、超导电机等方面。

国内在 MgB<sub>2</sub> 超导现象发现之初就开展了大量的 研究工作,在超导机理,超导薄膜,超导块材以及超 导线、带材等方面都取得了很多有意义的结果。闫世 成等人对 Mg-B 体系的成相热力学及动力学进行了系 统的研究,建立了 Mg-B 体系的反应模型<sup>[1,2]</sup>。冯庆荣 小组采用混合物理化学气相沉积法、溶胶-凝胶法及电 子束退火工艺获得了高质量的 MgB<sub>2</sub> 薄膜<sup>[3-5]</sup>。Wang 等人采用 IMD 工艺制备了 6 芯 78 m 长的  $MgB^2$ 线材, 超导层的临界电流密度 J<sub>c</sub>在 4.2 K, 10 T 达到 5.0×10<sup>4</sup> A·cm<sup>-2</sup>,采用该线材绕制的小型螺线管线圈中心磁场 最高达到 1.8 T<sup>[6,7]</sup>。整体来看,在材料研究方面,重 点还是进行高性能材料制备技术的研究。对于实用化 MgB2线带材的研究方面与国际上存在一定的差距。为 此,我们在前期7芯Cu包套及19芯蒙乃尔合金(Monel 400)包套 MgB<sub>2</sub>线材研制的基础上<sup>[8,9]</sup>,通过优化导体 结构设计,研制了 37 芯结构的多芯 MgB2 超导线材,

通过原位法粉末装管工艺(in-situ PIT)制备出了千米 量级长度的 MgB<sub>2</sub> 导线,并对其微观结构、力学性能 及超导性能进行了综合分析。

#### 1 实 验

实验中首先将 Mg 粉(10 μm,99%) 和无定形 B 粉(300 nm,99%) 按照原子比 Mg:B=1:2 的比例混合 并研磨均匀,然后填装到外径 15 mm,内径 12 mm 的 Nb 管中,外覆无氧铜(OFHC)管作为热稳定和电磁 稳定体材料。由于 Mg 粉、B 粉等装管前驱粉末粒度 较细,在空气环境下易于氧化、吸潮,所以前驱粉末 的称量、混合、研磨及填装过程均在氩气保护环境下 完成。将填装后的单芯复合管经过冷拉拔工艺加工到 一定尺寸,去除表面油污及氧化层,并按照二次管的 长度进行定尺截断。按照 37 芯密排结构集束组装到二 次包套 Monel 管中,导体结构设计示意图如图 1 所示。

多芯结构线材加工过程中,由于应力传递不均匀、 前驱粉体流动性较差等因素的影响,中心部位的芯丝易 于出现阻隔层破裂、芯丝断裂等现象,影响最终导线的 输电均匀性。所以在本实验导体结构设计中,我们采用 塑形加工性能良好的 NbCu 复合金属棒替换中心部位的 7 根单芯线材,形成如图 1 所示的 30+7 芯的导体结构。

收稿日期: 2019-08-05

基金项目:国家自然科学基金(51772250);陕西省自然科学基金(2017ZDJC-19);西安市未央区科技计划项目(201818)

作者简介: 王庆阳, 男, 1976 年生, 博士, 教授级高工, 西北有色金属研究院, 陕西 西安 710016, 电话: 029-86231079, E-mail: wqy233@sina.com



图 1 37 芯 MgB<sub>2</sub>线材导体结构设计示意图 Fig.1 Conduct design of 37-filaments MgB<sub>2</sub> wires

集束组装后的 37 芯复合棒材经旋锻、拉拔、轧制 以及中间退火热处理相结合的制备工艺加工到 Φ1.0 mm。加工到最终尺寸的线材取样进行烧结热处理,使 多芯线材中的前驱粉体形成 MgB<sub>2</sub> 超导相。热处理制 度为 650 ℃保温 2 h,然后随炉冷却。热处理后的线材 试样分别进行了微结构、力学性能及超导性能分析检 测。通过光学显微镜和 JSM-6460 型扫描电子显微镜 (SEM)分析了样品的横截面形貌及超导芯丝微观结 构。在室温条件下,测试了热处理前后多芯线材的拉 伸-应力应变性能。采用标准的四引线传输法测量了 MgB<sub>2</sub>线材在 4.2 K、不同磁场条件下的电压-电流曲线 所采用的失超判据为 1 μV/cm。

## 2 结果及讨论

多芯复合线材二次组装后的棒材直径在25 mm左 右,经过旋锻、拉拔、轧制等多道次冷塑形变形加工 到到目标尺寸 Φ1.0 mm,总加工量超过 99%,加工硬 化严重,易于出现断芯、断线现象。所以我们在加工过 程中加工率每达到 90%左右时,进行一次中间退火热 处理以消除加工位错,提高复合体的塑性变形能力。考 虑到体系中混合粉末粒度较细,比如无定形 B 粉的中 径粒度大约为 300 nm, Mg-B 体系起始反应温度较低。 所以实验中选用较低的退火温度,采用 400 ℃保温 1 h 的热处理制度进行低温去应力退火。热处理后通过 XRD 对芯丝粉末进行分析,主相依然是前驱物 Mg 的 衍射峰,说明 Mg-B 体系未发生相转变。通过冷塑性 加工和中间退火工艺,整根线材加工到目标尺寸 Φ1.0 mm,整个加工过程未出现断线现象,拉拔到 Φ1.0 mm 时多芯线材长度约 1020 m。

为了对整个冷塑形加工过程中多芯复合线材中 MgB<sub>2</sub> 芯丝的变形规律进行系统的研究,实验中在 Φ6.0, 3.0, 1.5 和 1.0 mm 等不同尺寸从长线尾部截取 短样进行制样并进行了横截面的金相分析,其结果如 图 2 所示。图 2a 和 2b 中多芯线材在直径 3.0 mm 以上 时,MgB<sub>2</sub> 单芯的 Nb 阻隔层厚度均匀,芯丝排布较为 规整。图 2c 即线材在 Ø1.5 mm 左右时,外层 18 根单 芯组元中个别芯丝的 Nb 阻隔层向内弯曲,MgB<sub>2</sub>芯丝 的横截面近似呈月牙状,并随多芯线材直径的减小, 该现象愈加明显。最终 Ø1.0 mm 的线材中,内层芯丝 厚度均匀,而在以前我们研制多芯 MgB<sub>2</sub>超导线材时, 通常内层芯丝更容易出现问题,Nb 阻隔层容易出现破 损现象,甚至部分内层芯丝断裂等。而本次实验中芯 数更多,结构相对更为复杂的 37 芯结构 MgB<sub>2</sub>超导线 材的实验得到了明显的改进,主要与阻隔层厚度增加 和加工工艺优化有关,本次实验中了采用了壁厚 1.5 mm 的 Nb 管,并且在试验中引入孔型轧制工艺,轧制 过程中芯丝主要受力均为压应力,芯丝变形更为均匀。

通过金相分析软件计算了最终尺寸 Φ1.0 mm 线材 样品中各组元的百分比,图 2d 中各相的比例如表 1 所 示。其中 30 根 MgB<sub>2</sub>超导芯丝的面积之和占线材横截 面总面积的百分比为 13.9%,与初始导体设计的比例接 近。MgB<sub>2</sub>超导芯丝截面形状并非标准圆形,但通过面 积计算后的平均等价直径约为 80 μm,且内层芯丝面积 偏差较小,较为均匀的超导芯丝分布为多芯线材的电流 传输稳定性提供了一个基本保障。



- 图 2 Φ6.0, 3.0, 1.5 和 1.0 mm 不同尺寸时 37 芯 MgB<sub>2</sub>超导线材 的横截面形貌图
- Fig.2 Transverse cross section morphologies of 37-filaments MgB<sub>2</sub> wires with different diameters: (a) 6.0 mm, (b) 3.0 mm, (c) 1.5 mm, and (d) 1.0 mm

横截面金相分析仅仅反应的是一个"点"上MgB2 芯丝的分布情况,为了更直观地观察一定长度上单芯阻 隔层的表面状态,我们进行了纵向的金相分析,如图 3 所示。实验中采用化学腐蚀的方法去掉外包套 Monel 层及单芯芯丝与 Monel 包套之间的稳定体 Cu 层,并进 行金相显微分析。图 3a 是去掉芯丝外层金属后的显微 照片,可以看到,纵向加工流线清晰可见,单芯线材 Nb 阻隔层连续、完整,未出现明显的破损点,芯丝纵 向分布较为均匀。图 3b 是进一步长时间腐蚀去掉单芯 芯丝之间的金属 Cu 以后的照片,37 根亚组元分布完 整,同时芯丝也未出现断裂现象。去掉单芯芯丝之间的 Cu 以后,芯丝间没有连接而相互分离,烟花状向外自 然分散弯曲。芯丝向外弯曲是由于加工过程中芯丝外层 受压应力,芯丝分离后加工应力释放所致,这一点从热 处理以后芯丝的分布状态分析得到证实。

从 Φ1.0 mm 的长线上截取约 1.2 m 的短样并绕制 到直径 32 mm、高度 45 mm 的螺线管上进行烧结热处 理,在流通 Ar 气保护条件下 650 ℃保温 1.5 h,热处 理后的试样在液氦温度下进行了超导传输测试。采用 标准的四引线传输法测量了 37 芯 MgB<sub>2</sub>线材样品在不

表 1 37 芯 MgB<sub>2</sub>线材中各相百分比及横截面面积 Table 1 Transverse cross section area and percentage of each

| composition in 57-mainents MgD <sub>2</sub> wires |                      |           |  |  |
|---------------------------------------------------|----------------------|-----------|--|--|
| Composition                                       | Area/mm <sup>2</sup> | Percent/% |  |  |
| $MgB_2$                                           | 0.11                 | 13.9      |  |  |
| Nb barrier layer                                  | 0.15                 | 19.0      |  |  |
| Cu                                                | 0.17                 | 21.5      |  |  |
| Monel                                             | 0.31                 | 39.3      |  |  |
| Nb centre bar                                     | 0.05                 | 6.3       |  |  |
| Total                                             | 0.79                 | 100       |  |  |



图 3 Φ1.0 mm 多芯 MgB2 线材纵向显微照片及芯丝图片



同磁场下的超导电流传输性能,测试结果如图 4 所示。 失超判据为 1 μV/cm,测试时 2 根电压引线之间的距离 约为 50 cm,所以临界电流为 U-I 曲线上 50 μV 电压值 对应的电流。

样品在 4.2 K, 2、4、6 和 8 T 磁场下的超导临界 电流分别为 711.5、246.3、83.5 和 28.7 A。根据公式  $J_e=I_c/S_{total}$  计算样品的工程临界电流密度  $J_e$ ,式中  $S_{total}$ 为多芯线材的总面积。根据公式  $J_c=I_c/S_{super}$  计算样品的 临界电流密度  $J_e$ ,式中  $S_{super}$  为多芯线材样品中 30 根 MgB<sub>2</sub>超导芯丝的面积。根据公式  $n=lg(U/U_0)/lg(I/I_0)$ , 式中  $I_0$ 选用参照电压 10  $\mu$ V 所对应的电流。由表 1 可 知  $\Phi$ 1.0 mm MgB<sub>2</sub>线材的总面积  $S_{total}$  为 0.79 mm<sup>2</sup>,其 中 30 根 MgB<sub>2</sub>超导芯丝的面积 37 芯 MgB<sub>2</sub>超导线材的  $J_e$ 、  $J_c$ 及 n 值等相关超导性能参数,计算结果如表 2 所示。

由表 2 可知,该 37 芯线材在 4.2 K,4 T 时的临界 电流密度 J<sub>c</sub>达到 2.31×10<sup>5</sup> A/cm<sup>2</sup>。美国 Hyper Tech 公 司类似结构线材 J<sub>c</sub>性能的最新报道为 2.0×10<sup>5</sup> A/cm<sup>2</sup> (4.2 K,4 T)<sup>[10]</sup>,与我们所研制线材 J<sub>c</sub>性能相当。 在具体应用过程中,工程临界电流密度 J<sub>e</sub>更为重要, 本线材的 J<sub>e</sub>性能在 4.2 K,4 T 仍高达 3.16×10<sup>4</sup> A/cm<sup>2</sup>, 能够满足中低磁场应用的需求。n 值是反映超导线材 样品由超导态向正常态转变过程的特性参数,与样品



图 4 4.2 K、不同磁场下 37 芯 MgB<sub>2</sub>线材的超导传输性能 Fig.4 Transfer critical current (*I*<sub>c</sub>) of 37-filaments MgB<sub>2</sub> wires at

4.2 K under various magnetic fields

表 2 37 芯 MgB<sub>2</sub>线材的临界电流、工程临界电流密度、临界 电流密度及 n 值等相关超导性能参数

| Table 2 $I_c$ , $J_e$ , $J_c$ and <i>n</i> of 37-filaments MgB <sub>2</sub> wires |                     |                                                  |                                                  |       |  |
|-----------------------------------------------------------------------------------|---------------------|--------------------------------------------------|--------------------------------------------------|-------|--|
| Field/T                                                                           | $I_{\rm c}/{\rm A}$ | $J_{\rm e}$ /×10 <sup>4</sup> A·cm <sup>-2</sup> | $J_{\rm c}$ /×10 <sup>5</sup> A·cm <sup>-2</sup> | п     |  |
| 2                                                                                 | 711.5               | 9.06                                             | 6.71                                             | 22.04 |  |
| 4                                                                                 | 246.3               | 3.16                                             | 2.31                                             | 33.07 |  |
| 6                                                                                 | 83.5                | 1.06                                             | 0.788                                            | 23.62 |  |
| 8                                                                                 | 28.7                | 0.365                                            | 0.271                                            | 20.18 |  |

性能好坏有密切的关系,本线材在 2、4、6、8 T 等不 同背景磁场下的 n 值均大于 20, U-I 曲线转变过程较 为锐利,无明显"爬坡"现象。考虑到 MgB<sub>2</sub> 超导线 材主要的应用区间在 20 K, 1~3 T 的中低磁场条件下, 而 20 K 的传输测试更为复杂和昂贵。根据以往测试经 验, MgB<sub>2</sub>线材在 4.2 K,4 T 的超导传输性能与 20 K, 2 T 的超导传输性能较为接近,所以本实验中仅测试了 4.2 K 时的超导传输性能,可以对其 20 K 的性能进行初 步的外推估算。

在实际工程应用中, MgB2超导线材会面临复杂的 应用环境。比如在超导传输过程中,会受到洛仑兹力 等电磁力作用。在超导磁体的绕制、超导电缆的编织等 过程中线材通常也会受到弯曲、扭转、拉伸等力学应力。 所以制备出具有良好的机械性能的多芯 MgB2 线材对 实现其工程应用至关重要。由于该 37 芯线材中既包含 有 Monel、Cu、Nb 等金属相,也包含有 Mg 粉、B 粉 等粉末相或热处理后形成的脆性 MgB2 超导相,各组元 的力学性能难以单独分析。所以实验中我们测试了 37 芯线材在最终尺寸热处理前、后的室温拉伸应力-应变 曲线,测试结果如图5所示。其中内插图是线材热处理 前、后完整的拉伸应力-应变曲线。可以看到,热处理 前、后线材力学性能变化很明显,热处理前线材的抗拉 强度 ( $\sigma_b$ ) 达到 968 MPa, 但是塑性较差, 拉伸应变在 4.64%时线材已经断裂。热处理后线材塑性大幅改善, 拉伸应变达到 29.4%,但拉伸强度相应降低,抗拉强度 仅有 409 MPa。

对于采用原位法粉末装管工艺制备的 MgB<sub>2</sub> 线材 来说,热处理前的线材中是 B 粉和 Mg 粉的混合相, 尚未形成 MgB<sub>2</sub>超导相,实际应用中更关注的是热处理 后线材的力学性能。同时由于 MgB<sub>2</sub>材料是一种具有陶



图 5 热处理前后 MgB<sub>2</sub>线材的室温拉伸应力-应变曲线

 $Fig. 5 \quad Stress-stain \ curves \ of \ as-drawn \ and \ sintered \ MgB_2 \ wires$ 

瓷性质的脆性二元化合物相,多芯线材中的 MgB<sub>2</sub>相几 乎不具有塑性变形性能。拉伸应力状态下 MgB<sub>2</sub>相易于 出现裂纹且裂纹扩展速度很快,超过屈服点后,MgB<sub>2</sub> 超导芯丝已经出现裂纹或断裂<sup>[11]</sup>,所以热处理后线材 具有较高屈服强度更具有实际意义。从图 5 中可以看 到,该多组元复杂结构多芯线材的拉伸测试曲线上,热 处理前、后未出现明显的屈服平台,按照惯例以 0.2% 的塑形变形作为其屈服点 ( $\sigma_s$ 或 $\sigma_{0,2}$ ),得到线材的屈服 强度分别为 759 和 248 MPa,与国际上类似多芯结构 MgB<sub>2</sub> 超导线材的力学性能相当<sup>[12]</sup>,能够满足超导电 缆、MRI 超导磁体等工程应用。

### 3 结 论

 本实验采用原位法粉末装管工艺,以蒙乃尔合 金作为外包套材料,研制了千米量级长度的 37 芯结构 的MgB<sub>2</sub>超导线材。最终尺寸线材中的Nb阻隔层完好, 未出现破损现象,MgB<sub>2</sub>超导芯丝尺寸达到 80 μm 左 右,芯丝分布规整,无断芯、断线发生。

 所研制 MgB<sub>2</sub> 超导线材的临界电流密度 J<sub>c</sub> 在
4.2 K, 4 T 达到 2.31×10<sup>5</sup> A/cm<sup>2</sup>, 工程临界电流密度 J<sub>e</sub>达到 3.16×10<sup>4</sup> A/cm<sup>2</sup>。热处理后线材的屈服强度达到 约 248 MPa。

#### 参考文献 References

- [1] Yan Shicheng(闫世成), Yan Guo(闫果), Lu Yafeng(卢亚锋) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2006, 35(12): 1892
- [2] Yan S C, Lu Y F, Liu G Q et al. Journal of Alloys and Compounds[J], 2007, 443(1-2): 161
- [3] Zhang Y H, Lin Z Y, Dai Q et al. Superconductor Science and Technology[J], 2011, 24(1): 015 013
- [4] Chen L P, Zhang C, Wang Y B et al. Superconductor Science and Technology[J], 2011, 24 (1): 015 002
- [5] Xu Z, Kong X D, Wang J et al. Advanced Materials Research[J], 2014, 887-888: 737
- [6] Wang D L, Ma Y W, Yao C et al. Superconductor Science and Technology[J], 2017, 30(6): 064 003
- [7] Wang D L, Xu D, Zhang X P et al. Superconductor Science and Technology[J], 2016, 29(6): 065 003
- [8] Li C S, Yan G, Wang Q Y et al. Physica C-Superconductivity and Its Applications[J], 2013, 494: 177
- [9] Wang Qingyang(王庆阳), Zhang Kerong(张可荣), Yang Fang (杨 芳) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2019, 48(10): 3320
- [10] Konstantopoulou K, Hurte J, Retz P W et al. Superconductor

Science and Technology[J], 2019, 32(8): 085 003

[11] Kovac P, Melisek T, Kopera L et al. Superconductor Science and Technology[J], 2009, 22(7): 075 026 [12] Konstantopoulou K, Ballarino A, Gharib A et al. Superconductor Science and Technology[J], 2016, 29(8): 084 005

## Fabrication and Properties of 37-Filaments MgB<sub>2</sub> Superconducting Wires by In-Situ Powder-in-Tube Method

Wang Qingyang<sup>1</sup>, Zhang Kerong<sup>2</sup>, Yang Fang<sup>1</sup>, Xiong Xiaomei<sup>1</sup>, Xi Dan<sup>3</sup>, Wang Dayou<sup>3</sup>,

Li Chengshan<sup>1</sup>, Yan Guo<sup>3</sup>, Feng Yong<sup>3</sup>, Zhang Pingxiang<sup>1,3</sup>

(1. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

(2. Xizang Minzu University, Xianyang 712082, China)

(3. Western Superconducting Technologies Co. Ltd, Xi'an 710018, China)

**Abstract:** The 37 filaments MgB<sub>2</sub> long wires with the diameter of 1.0 mm, sheathed with higher strength Monel alloys (Monel 400) were fabricated with compound fabrication process including rotary swage, drawing, rolling and middle annealing heat treatment. The microstructure results show that the subcomponent including MgB<sub>2</sub> filament and NbCu replacement is uniformly distributed, and there is no breaking point in the Nb diffusion barrier. The mean diameter of MgB<sub>2</sub> filament is only 80  $\mu$ m in final wires. The yield strength is around 759 MPa for the as-drawn wire and 248 MPa for the sintered wire. The critical current density ( $J_c$ ) and engineering current density ( $J_c$ ) reach  $2.31 \times 10^5$  and  $3.16 \times 10^4$ A·cm<sup>-2</sup> at 4.2 K and 4 T, respectively.

Key words: MgB2 wire; multi filament; mechanical properties; superconducting property

Corresponding author: Zhang Pingxiang, Ph. D., Professor, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China, Tel: 0086-29-86231079, E-mail: pxzhang@c-nin.com