刘晓燕,杨成,杨西荣.基于人工神经网络的超细晶纯钛热变形本构模型研究[J].稀有金属材料与工程,2018,47(10):3038~3044.[liuxiaoyan,yangcheng,yangxirong.A Constitutive Model of Ultrafine Grained Pure Titanium at ElevatedTemperature Based on Artificial Neural Network[J].Rare Metal Materials and Engineering,2018,47(10):3038~3044.]
基于人工神经网络的超细晶纯钛热变形本构模型研究
投稿时间:2017-01-08  修订日期:2018-09-07
中文关键词:  超细晶纯钛  人工神经网络  Arrhenius本构方程  流变应力
基金项目:国家自然科学基金(51474170)和陕西省自然科学基金(2016JQ5026)联合资助
中文摘要:
      对等通道转角挤压(ECAP)制备的超细晶纯钛,在温度为250~450 ℃、应变速率为10-5~1s-1的条件下进行热压缩实验。基于真应力和真应变实验数据,分别使用人工神经网络(ANN)和Arrhenius方程建立超细晶纯钛的热变形本构模型,研究其热变形行为。实验结果表明:在变形初期,流变应力随应变的增大而升高,随后趋于平缓,最终流变应力达到一个稳定值。人工神经网络训练和预测结果表明:人工神经网络最佳结构为3×12×1,人工神经网络模型预测的平均相对误差(AARE)为2.1%,相关系数(R)为0.9979,Arrhenius方程模型预测的AARE为11.54%,R为0.9464。即人工神经网络模型能够更加精确的描述超细晶纯钛的本构关系。通过对比不同温度下两种模型的误差,人工神经网络模型在高温条件下具有更好的稳定性。
A Constitutive Model of Ultrafine Grained Pure Titanium at ElevatedTemperature Based on Artificial Neural Network
英文关键词:Ultrafine grained pure titanium  artificial neural network  Arrhenius constitutive equations  flow stress
英文摘要:
      Ultrafine grained (UFG) pure titanium was prepared by ECAP up to four passes. The hot compression tests were conducted in the different temperatures (250~450 ℃) and the strain rates of 10-5~1s-1.The artificial neural network (ANN) and Arrhenius constitutive equation were used for establishing constitutiveSmodel of UFG pure titanium, respectively. The experimental results show that the flow stress increased with the increase of strain at the beginning of the deformation, then increased slowly. Finally, the stress reached a stable value. The experimental value and the predicted value of flow stress showed that the average absolute relative errors obtained from the artificial neural network model and Arrhenius constitutive equations were 2.1% and 11.54%, respectively. The correlation coefficient of the artificial neural network model and Arrhenius constitutive equations were 0.9979 and 0.9464, respectively. It means that the artificial neural network model can more accurately describe the constitutive relations of UFG pure titanium. By comparing the error of the two models under different temperatures, it can be find that artificial neural network model has better stability under the condition of high temperature.
作者单位E-mail
刘晓燕 西安建筑科技大学冶金工程学院 xauat-lxyan@hotmail.com 
杨成 西安建筑科技大学冶金工程学院 742906930@qq.com 
杨西荣 陕西省冶金工程技术研究中心
西安建筑科技大学冶金工程学院 
 
摘要点击次数: 23
全文下载次数: 7
查看全文  查看/发表评论  下载PDF阅读器
关闭