+高级检索
ECAP+旋锻变形制备超细晶纯锆的低周疲劳行为研究
DOI:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

TG146

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);陕西省教育厅科技专项


Low Cycle Fatigue Behavior of Ultrafine grained CP-Zr Processed by ECAP and RS
Author:
Affiliation:

Xi’an University of Architecture and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan);Special science and technology in Shanxi province department of education

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用等径弯曲通道(ECAP)+旋锻(RS)复合变形技术制备了超细晶工业纯锆,通过轴向对称应变控制方法对超细晶纯锆的低周疲劳性能进行研究,讨论了超细晶纯锆的循环应力-应变响应及滞后回线,并分析了超细晶纯锆的软硬化特性、累积滞后规律并预测其疲劳寿命。结果表明:超细晶纯锆的循环软硬化特性依赖于外加总应变幅的大小,而且总应变幅大于1.0%时软化比达到峰值,循环软化特性最为显著。滞后回线面积随着总应变幅的增大而增大,当应变幅较小时出现“棘齿现象”。回归分析表明超细晶纯锆疲劳寿命满足Coffin-Manson经验关系式。

    Abstract:

    Ultrafine grained (UFG) commercially pure Zr was prepared by Equal Channel Angular Pressing (ECAP) and Rotary swaging (RS). The Low cycle fatigue properties of the UFG pure Zr were investigated by a method under axial loading controlled by symmetric strain. The characteristics of cyclic stress and strain response and hysteresis loop of UFG pure Zr were discussed. Softing and hardening characteristics and cumulative hysteresis of the UFG pure Zr were analyzed and then the fatigue life was predicted. The results indicate that the cyclic softening and hardening properties of UFG pure Zr depend on the size of the applied total strain amplitude, and the softening ratio is most significant when the total strain amplitude is more than 1.0%. The hysteresis loop area increases with the total strain amplitude increasing, and the “ratchet phenomenon” occurs when the strain amplitude is small. Regression analysis shows that the fatigue life of UFG pure Zr matches Coffin-Manson"s empirical

    参考文献
    相似文献
    引证文献
引用本文

杨西荣. ECAP+旋锻变形制备超细晶纯锆的低周疲劳行为研究[J].稀有金属材料与工程,2019,48(4):1202~1207.[yangxirong. Low Cycle Fatigue Behavior of Ultrafine grained CP-Zr Processed by ECAP and RS[J]. Rare Metal Materials and Engineering,2019,48(4):1202~1207.]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-31
  • 最后修改日期:2017-12-05
  • 录用日期:2017-12-18
  • 在线发布日期: 2019-05-13
  • 出版日期: