戴勇,吕亚平,李少君,张晓泳,周科朝.针片Ti-5Al-5Mo-5V-3Cr-1Zr热加工过程中的球化动力学及有限元仿真[J].稀有金属材料与工程,2019,48(4):1109~1115.[Yong Dai,Ya-ping Lv,Shao-jun Li,Xiao-yong Zhang,Ke-chao Zhou.Dynamic globularization kinetics and Finite Element Analysis for the Hot Working of Ti-5Al-5Mo-5V-3Cr-1Zr with Initial Lamellar Microstructure[J].Rare Metal Materials and Engineering,2019,48(4):1109~1115.]
针片Ti-5Al-5Mo-5V-3Cr-1Zr热加工过程中的球化动力学及有限元仿真
投稿时间:2017-11-02  修订日期:2018-01-25
中文关键词:  近β钛合金  Ti-55531  热变形  球化动力学模型  有限元
基金项目:2015粉末冶金国家重点实验室自主课题,湖南省重点研发计划(2016JC2003)
中文摘要:
      α相形态是影响钛合金力学性能的重要因素。为了预测初始层状α的Ti-55531(Ti-5Al-5Mo-5V-3Cr-1Zr)的微观组织演变,采用Avrami方程对Ti-55531热变形过程中的动态球化动力学模型进行了表征。为了确定方程的参数,为了获得应力σ-应变ε曲线进行了一系列热模拟实验。通过进一步将应力σ-应变ε曲线转化为应变硬化速率dσ/dε-ε曲线,可以获得临界应变εc(对应dσ/dε的最小值)和峰值应变εp(dσ/dε=0时的应变)。还测量了不同变形条件下的动态球化分数fg。接下来,通过线性拟合应变率,温度和动态球化部分之间的关系来确定Avrami方程中的参数。得到的Avrami方程表示为fg=1-exp[-0.5783((ε-εc)/εc)0.907],其中εc=0.6053εp,εp=1.249×10-4?0.0807exp(58580/RT)。最后,将获得的动态球化动力学模型植入有限元程序中模拟动态球化动力学。将动态球化动力学模型与有限元方法相结合,有效地预测了针片α动态球化动力学过程。
Dynamic globularization kinetics and Finite Element Analysis for the Hot Working of Ti-5Al-5Mo-5V-3Cr-1Zr with Initial Lamellar Microstructure
英文关键词:Near β titanium alloy  Ti-55531  Hot deformation  Dynamic globularization kinetics model  Finite element method.
英文摘要:
      Characteristic of α phase is an important factor affecting the mechanical properties of titanium alloys. To predict the microstructure evolution of the Ti-55531 (Ti-5Al-5Mo-5V-3Cr-1Zr) with initial lamellar α, the dynamic globularization kinetics model of Ti-55531 during hot deformation was characterized by Avrami equation. A series of thermal simulation experiments were conducted to obtain the curves of stress σ versus strain ε to determine the equation parameters. By further transforming the stress σ-strain ε curves into strain hardening rate dσ/dε-ε curve, the critical strain εc (corresponding to the minimum value of dσ/dε) and the peak strain εp (the strain at dσ/dε = 0) be obtained. The dynamic globularized fraction fg at different deformation conditions was also measured. Sequentially, the parameters in the Avrami equation were determined from the linear fitting of the relationships among strain rate, temperature, and dynamic globularized fraction. The as-obtained Avrami equation was expressed as fg =1-exp[-0.5783((ε-εc)/εc)0.907], where εc =0.6053εp and εp =1.249×10-4?0.0807exp(58580/RT). Finally, the as-obtained dynamic globularization kinetic model was implanted into finite element program to simulate dynamic globularization kinetics. By combining the dynamic globularization kinetics model with the finite element method, the dynamic globularization of the lamellar α was predicted effectively.
作者单位E-mail
戴勇 中南大学粉末冶金研究院 dycsu2011@126.com 
吕亚平 中南大学粉末冶金研究院  
李少君 中南大学粉末冶金研究院  
张晓泳 中南大学粉末冶金研究院 zhangxiaoyong@csu.edu.cn 
周科朝 中南大学粉末冶金研究院  
摘要点击次数: 109
全文下载次数: 79
查看全文  查看/发表评论  
关闭