+高级检索
核电压力容器600合金小裂纹应力腐蚀开裂扩展速率定量预测
DOI:
作者:
作者单位:

西安科技大学机械工程学院

作者简介:

通讯作者:

中图分类号:

TG174.3

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Quantitative prediction of Small Crack Stress Corrosion Crack Propagation Rate of Alloy 600 for Nuclear Pressure Vessels
Author:
Affiliation:

School of Mechanical Engineering, Xi’an University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小裂纹应力腐蚀开裂(SCC)在核电关键构件(NPPs)的全寿命衰减过程有重要影响。通过将薄膜滑移-溶解/氧化模型与弹塑性有限元(EPFEM)相结合,定量预测核电反应堆压力容器(RPV)中小裂纹SCC扩展速率。根据裂纹尖端力学场的分析,确定以裂纹尖端应变率来表征小裂纹的萌生和扩展,并通过距离扩展小裂纹尖端特定的r0处的塑性应变(dep/da)来近似表征裂纹尖端应变率。提出了基于弹塑性断裂力学的动态裂纹扩展和准静态裂纹扩展两种方法计算塑性应变(dep/da),并进行两种计算方法比对塑性应变随裂纹长度变化的敏感性,得到两种计算方法之间差异的同时,也确定小裂纹扩展的塑性应变变化比长裂纹更为敏感。小裂纹的SCC扩展速率大于长裂纹的SCC扩展速率,距裂尖的特征距离r0是重要的影响因子,鉴于特定距离r0难以确定,建议通过将相同环境和相同材料下的SCC实验数据结合单边拉伸试样的有限元数值计算结果来确定。研究结果能够实现核电关键结构材料的SCC扩展速率定量预测及服役压力容器的安全评价。

    Abstract:

    Stress corrosion crack (SCC) of small crack has an important effect on the whole-life attenuation process of critical structures in nuclear power plants (NPPs). By combining the film slip-dissolution/oxidation model with the elastic-plastic finite element method (EPFEM), the quantitatively predicting of SCC propagation rate for small crack in reactor pressure vessels (RPVs) of NPPs. According to the crack tip mechanical field analysis, the crack tip strain rate is determined to control the initiation and propagation of small cracks, and it is approximately calculated by the variation of plastic strain (dep/da) at a characteristic distance r0 in front of a growing small crack tip. Two methods of dynamic crack propagation method and quasi-static crack propagation method based on EPFEM were proposed to calculate the variation of plastic strain (dep/da). The contrast of the two calculation method and the sensitivity analysis of variation of plastic strain to the crack length were carried out, which concludes that the slight differences between the two methods, and the plastic strain variation are more sensitive to crack propagation with small crack than that of long crack. The SCC propagation rate of small cracks is larger than that of long cracks, and it is significantly influenced by the characteristic distance r0. As it is difficult to determine the value of characteristic distance r0 finally due to the unclear of its meaning, it is suggested to be determined by combining experimental SCC data with a finite element simulation of the single-edge crack panel specimens under the same environmental and material conditions. The approach proposed in this paper is expected to quantitatively predict SCC propagation rate in core materials and evaluating SCC propagation in key structural components in NPPs.

    参考文献
    相似文献
    引证文献
引用本文

方秀荣,杨锦辉,邵艳茹,欧雪.核电压力容器600合金小裂纹应力腐蚀开裂扩展速率定量预测[J].稀有金属材料与工程,2019,48(8):2424~2431.[Xiurong Fang, Jinhui Yang, Yanru Shao, Xue Ou. Quantitative prediction of Small Crack Stress Corrosion Crack Propagation Rate of Alloy 600 for Nuclear Pressure Vessels[J]. Rare Metal Materials and Engineering,2019,48(8):2424~2431.]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-06
  • 最后修改日期:2019-06-14
  • 录用日期:2019-03-14
  • 在线发布日期: 2019-09-05
  • 出版日期: