陈航,弭光宝,李培杰,黄旭,曹春晓.氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理[J].稀有金属材料与工程,2022,51(8):2899~2906.[Chen Hang,Mi Guangbao,Li Peijie,Huang Xu,Cao Chunxiao.Influence mechanism of graphene oxide on non-oxidation behavior of near-αhigh-temperature titanium alloy[J].Rare Metal Materials and Engineering,2022,51(8):2899~2906.]
氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理
投稿时间:2022-01-03  修订日期:2022-01-30
中文关键词:  高温钛合金  氧化石墨烯  非等温氧化  氧化动力学  氧化机理
基金项目:国家科技重大专项(J2019-VIII-0003-0165)和国家自然科学基金“叶企孙”科学(U2141222)
中文摘要:
      采用热重—差热分析仪对未添加氧化石墨烯(GO)和添加0.5 wt.% GO的近α型高温钛合金(Ti150)进行室温~1500 ℃ 的非等温氧化试验,分析氧化增重规律和氧化产物组织特征,揭示GO对非等温氧化行为的影响机理。结果表明:添加GO的Ti150钛合金的非等温氧化过程包括基本无氧化(≤800 ℃)、氧在α相缓慢溶解(800~1160 ℃)、氧在两相区加速溶解(1160~1300 ℃)、氧在β相快速溶解(1300~1330 ℃)和氧化层剧烈生长(1330~1500 ℃)等五个阶段,氧在β相的溶解和氧化层的生长是非等温氧化增重的主要原因;非等温氧化温度升高至1500 ℃ 时,添加GO的Ti150钛合金的氧化增重和氧化层厚度比未添加GO的合金分别降低10.8%和17.9%;GO提高Ti150钛合金的抗非等温氧化性的主要机理包括两个方面,一是GO提高了合金的β转变温度,推迟了氧在β相中的快速溶解,减少了氧的溶解量;二是GO细化了合金晶粒,增加了晶界数量,使Al和Sn离子更容易向外扩散形成连续致密的富Al2O3层和富Sn层,增强了对氧和金属离子的阻隔作用。
Influence mechanism of graphene oxide on non-oxidation behavior of near-αhigh-temperature titanium alloy
英文关键词:High-temperature titanium alloys  Graphene oxide  Non-isothermal oxidation  Oxidation kinetics  Oxidation mechanism
英文摘要:
      The non-isothermal oxidation tests ofthe near-α high-temperature titanium alloys (Ti150) without graphene oxide (GO) and with 0.5 wt.% GO were carried out at room temperature ~1500 ℃ by thermogravimetry-differential scanning calorimetry method. The influence mechanism of GO on non-isothermal oxidation behavior was revealed by analyzing the oxidation mass gain laws and the microstructure characteristics of oxidation products. The results showed that the non-isothermal oxidation process of Ti150 alloy with GO included almost no oxidation (≤800 ℃), slow dissolution of oxygen in α phase (800~1160 ℃), accelerated dissolution of oxygen in two-phase region (1160~1300 ℃), rapid dissolution of oxygen in β phase (1300~1330 ℃), and violent growth of oxide scale (1330~1500 ℃) five stages. The dissolution of oxygen in β phase and growth of oxide scale were the main reasons for the non-isothermal oxidation mass gain. After non-isothermal oxidation to 1500 ℃, the non-isothermal oxidation mass gain and oxide scale thickness of Ti150 alloy with GO were 10.8% and 17.9% lower than those without GO, respectively. The main mechanism of GO improving the non-isothermal oxidation resistance was that the beginning temperature of rapid dissolution of oxygen in β-Ti was delayed due to the higher β-transus temperature of Ti150 alloy with GO, which resulted in the decrease of oxygen solution, and the finer grain made the Al2O3-rich oxide layer and the Sn-rich layer more continuous and dense, which were more effective barriers to ion diffusion.
作者单位E-mail
陈航 中国航发北京航空材料研究院先进钛合金航空科技重点实验室 chenhanghit@126.com 
弭光宝 中国航发北京航空材料研究院先进钛合金航空科技重点实验室 guangbao.mi@biam.ac.cn;miguangbao@163.com 
李培杰 清华大学  
黄旭 中国航发北京航空材料研究院先进钛合金航空科技重点实验室  
曹春晓 中国航发北京航空材料研究院先进钛合金航空科技重点实验室  
摘要点击次数: 93
全文下载次数: 63
查看全文   查看/发表评论    HTML
关闭