+高级检索
氧气在铀钼体系表面吸附和解离行为的第一性原理研究
作者:
作者单位:

1.清华大学 材料学院,北京 100084;2.西安高科技研究所,陕西 西安 710025;3.北京师范大学 核科学与技术学院,北京 100875

作者简介:

通讯作者:

中图分类号:

基金项目:

NSFC(Grant No. 11975135,12005017), the National Basic Research Program of China (Grant No. 2020YFB1901800)


First-Principles Study of Surface Adsorption and Dissocia-tion Behavior of O2 on Uranium-Molybdenum System
Author:
Affiliation:

1.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;2.Xi'an Research Institute of High-Technology, Xi 'an 710025, China;3.College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Fund Project:

National Natural Science Foundation of China (11975135, 12005017); National Basic Research Program of China (2020YFB1901800)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于第一性原理探究了氧气分子在铀钼表面的吸附解离行为。在五层γ-U(100)表面构型的基础上,用单个钼原子置换表层的1个高对称点的铀原子,并用4个钼原子置换表层铀原子后,分别建立了γ-U(100)/Mo和γ-U(100)/4Mo模型,计算得到了不同吸附构型下的结构参数、吸附能、Bader电荷、电子结构和表面功函数。结果表明,氧分子在γ-U(100)/Mo和γ-U(100)/4Mo表面为化学吸附,且最稳定的吸附位点为空位平行吸附,吸附能分别为-12.552和-8.661 eV。氧分子在铀钼表面的吸附分为解离吸附和未解离吸附,两者共同组成稳定的吸附行为,同时,解离吸附比未解离吸附更为稳定。Bader电荷结果表明,氧气在吸附过程中,主要与吸附表面最上两层的原子发生电荷转移。电子结构研究表明,O 2s和U 6p轨道发生轻微杂化,O 2p与U 6d、Mo 5s、Mo 4p、Mo 4d轨道发生较强的重叠杂化。本研究为氧分子在铀钼合金表面的吸附提供了机理阐述,并进一步为氧气在铀钼合金表面的腐蚀机理研究提供理论基础。

    Abstract:

    The adsorption and dissociation behavior of O2 molecules on U-Mo alloy surface was studied based on the first-principles simulation. One U atom at the highly symmetrical adsorption sites of the top layer was replaced by one Mo atom, and four U atoms at the top layer were replaced by four Mo atoms, resulting in the fact that γ-U(100)/Mo and γ-U(100)/4Mo slabs were established on the basis of the γ-U(100) slab with five layers. The configuration parameters, adsorption energy, Bader charge, electronic structure, and surface work function were calculated under different adsorption configurations. Results show that the O2 molecules are chemically absorbed on the γ-U(100)/Mo and γ-U(100)/4Mo surfaces with the adsorption energy of -12.552 and -8.661 eV, respectively. The most stable adsorption configuration is the hollow horizontal adsorption configuration. The O2 molecule adsorption on U-Mo alloy surface can be divided into dissociated adsorption and undissociated adsorption, which jointly contribute to the stable adsorption behavior. In addition, the dissociated adsorption is more stable than the undissociated adsorption. The Bader charge results show that during the oxygen adsorption, the charge transfer mainly occurs at the atoms of the top two layers of adsorption surface. The electronic structure results show that the slight overlapping hybridization occurs in O 2s with U 6p orbitals. Meanwhile, the strong overlapping hybridization occurs in O 2p with U 6d, Mo 5s, Mo 4p, and Mo 4d orbitals. This research clarifies the O2 molecule adsorption mechanism on U-Mo alloy surface and provides theoretical basis for the oxidation corrosion mechanism of U-Mo alloy surface.

    参考文献
    相似文献
    引证文献
引用本文

李俊炜,贾维敏,吕沙沙,王金涛,李正操.氧气在铀钼体系表面吸附和解离行为的第一性原理研究[J].稀有金属材料与工程,2023,52(5):1650~1660.[Li Junwei, Jia Weimin, Lv Shasha, Wang Jintao, Li Zhengcao. First-Principles Study of Surface Adsorption and Dissocia-tion Behavior of O2 on Uranium-Molybdenum System[J]. Rare Metal Materials and Engineering,2023,52(5):1650~1660.]
DOI:10.12442/j. issn.1002-185X.20220530

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-19
  • 最后修改日期:2022-07-07
  • 录用日期:2022-08-12
  • 在线发布日期: 2023-05-31
  • 出版日期: 2023-05-29