+高级检索
激光熔化沉积TiAl合金的组织与力学性能
DOI:
作者:
作者单位:

贵州大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

TG174.4;TG665

基金项目:

国家自然科学基金资助(项目号52475329),贵州省基础研究计划资助(黔科合基础-ZK[2024]重点 031),贵州省科技计划项目资助(黔科合平台人才-BQW[2024]011),贵州大学自然学科类专项(贵大领军合字[2024]03)。


Microstructure and mechanical properties of TiAl alloy fabricated by laser melting deposition
Author:
Affiliation:

College of Mechanical Engineering,Guizhou University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用激光增材技术能够制造形状复杂的TiAl合金零部件,从而进一步拓展这一轻质高温合金在航空航天领域的工程应用。但目前对激光熔化沉积TiAl合金工艺、组织及性能之间内在关系的研究较少。本工作以Ti-48Al-2Cr-2Nb合金粉末为实验材料,采用激光熔化沉积技术制备了宏观质量良好的TiAl合金试样,系统研究了优化工艺参数条件下沉积层的显微组织、相组成、硬度分布以及沉积试样的室温力学性能。结果表明,沉积层的显微组织结构主要由大量γ-TiAl相和少量的α2-Ti3Al相构成;沉积层组织表现出由柱状晶、等轴晶、胞状晶及板条状组织形成的层带组织特征,沉积层组织内的晶粒细化较明显。沉积层的硬度分布范围为537 HV0.3~598 HV0.3,底部的维氏硬度比中部及顶部高。TiAl合金试样在室温下的极限抗压强度为1545±64 MPa,压缩应变率17.68±0.07%;室温下沿激光扫描方向的极限抗拉强度为514±92 MPa,断后伸长率为0.2±0.04%;沿构建方向的极限抗拉强度为424±114 MPa,断后伸长率为0.15±0.07%,TiAl合金试样的室温拉伸断口形貌特征属于准解理断裂。通过优化扫描策略并辅以后续热处理,有望改善合金组织均匀性及力学性能的各向异性。

    Abstract:

    The use of laser additive manufacturing technology can manufacture complex shaped TiAl alloy components, further expanding the engineering applications of this lightweight high-temperature alloy in the aerospace field. However, there is currently limited research on the intrinsic relationship between the laser melting deposition process, microstructure, and properties of TiAl alloys. In this work, TiAl alloy specimens with good macroscopic quality were prepared by laser melting deposition using Ti-48Al-2Cr-2Nb alloy powder. The microstructure, phase composition, hardness distribution of the deposited layer, and room temperature mechanical properties of the deposited samples were systematically studied under optimized process parameters. The results show that the microstructure of the deposited layer mainly consists of a large number of γ-TiAl phases and a small amount of α2-Ti3Al phases; the microstructure of the deposited sample exhibits a layer characteristics formed by columnar crystals, equiaxial crystals, cytosolic crystals, and laths structure, and the grain refinement in the microstructure of the deposited layer is obvious. The hardness distribution of the deposited layer is from 537 HV0.3 to 598 HV0.3, and the Vickers hardness at the bottom is higher than that at the middle and the top. The ultimate compressive strength of the TiAl alloy specimens is 1545±64 MPa at room temperature, with a compressive strain rate of 17.68 ± 0.07%, and the ultimate tensile strength along the scanning direction of the laser is 514±92 MPa at room temperature, with an elongation at break of 0.2±0.04%; the ultimate tensile strength along the building direction is 424±114 MPa, with an elongation at break of 0.15±0.07%. The tensile fracture morphology of TiAl alloy specimens exhibits quasi cleavage fracture characteristics. By optimizing the scanning strategy and assisting with subsequent heat treatment, it is expected to improve the uniformity of alloy structure and the anisotropy of mechanical properties.

    参考文献
    相似文献
    引证文献
引用本文

陈永宁,肖华强,褚梦雅,莫太骞.激光熔化沉积TiAl合金的组织与力学性能[J].稀有金属材料与工程,,().[Chen Yongning, Xiao Huaqiang, Chu Mengya, Mo Taiqian. Microstructure and mechanical properties of TiAl alloy fabricated by laser melting deposition[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-11-15
  • 录用日期:2024-11-18
  • 在线发布日期:
  • 出版日期: