+高级检索
TA1/Q235钛钢爆炸焊接数值模拟及实验
作者单位:

陆军工程大学

中图分类号:

TG456.6

基金项目:

江苏省自然基金(BK20211232) 2023年南京市重大科技专项(202309011)


Numerical Simulation and Experiment of TA1/Q235 Ti-Steel Explosive Welding
Affiliation:

Army Engineering University of PLA

Fund Project:

Jiangsu Provincial Natural Science Foundation of China (BK20211232); 2023 Major Science and Technology Projects of Nanjing City (202309011)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为进一步降低临界装药厚度,提高爆炸焊接钛/钢复合板结合质量,在爆炸焊接下限原理指导下,采用低爆速53#药,进行了复板厚度分别为1、2、4 mm,间距分别为3、6、8 mm的TA1/ Q235爆炸焊接试验。计算了钛钢爆炸焊接的可焊性窗口并构建了动静态工艺参数之间的定量关系。提出了β-Vp高速倾斜碰撞模型,采用SPH方法对爆炸焊接试验进行二维数值模拟,揭示了典型波形形貌特征的生长演化机制。通过OM、SEM、EDS和EBSD等微观形貌表征,结合剪切性能、弯曲性能、冲击韧性等力学性能测试,研究了TA1/Q235爆炸焊接复合板的界面微观组织形貌和力学性能。结果表明,界面结合质量优良,呈现典型的波形形貌,界面剪切强度平均值在330Mpa以上,冲击韧性平均值在81J以上,试样均能实现180°弯曲且无明显的分层和裂纹等缺陷。

    Abstract:

    To further reduce the charge amount and improve the bonding quality of titanium/steel composite plates, explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive (53#) under the guidance of the explosive welding lower limit principle, with flyer plate thicknesses of 1, 2, and 4 mm and gaps of 3, 6, and 8 mm, respectively. The weldability window for titanium/steel explosive welding was calculated, and a quantitative relationship between dynamic and static process parameters was developed. A β-Vp high-speed inclined collision model was proposed, and two-dimensional numerical simulations for the explosive welding tests were performed using the SPH algorithm, revealing the growth evolution mechanisms of the typical waveform morphology characteristics. Through microstructural characterization methods such as OM, SEM, EDS, and EBSD, in conjunction with mechanical property tests including shear strength, bending performance, and impact toughness, the microstructural morphology and mechanical properties of the interfaces in TA1/Q235 explosive-welded composite plates were investigated. The results show that the quality of interface bonding is excellent, presenting typical waveform morphology, with an average interface shear strength above 330 MPa and an average impact toughness exceeding 81 J. All samples can be bent to 180° without significant delamination or cracking defects.

    参考文献
    References
    1. Bai Yuliang, Liu Xuefeng, Wang Wenjing et al. Chinese Jour-nal of Engineering[J], 2021, 43(1): 85
    2. Gao Baoli, Li Pingcang, Hua Xianfeng et al. Titanium Industry Progress[J], 2005, 22(4): 36
    3. Wang Ding, Sun Yunan, Xue Zhiguo et al. Rare Metal Materials and Engineering[J], 2023, 52(11)
    4. Yan Li. China Titanium Industry[J], 2011, (3): 12
    5. Hu Jie, Xie Rong, Du Xunbo. Jiangsu Ship[J], 2016, 33(6): 6
    6. Sahasrabudhe H, Harrison R, Carpenter C et al. Addit Manuf[J], 2015, 5: 1
    7. Miriyev A, Stern A, Tuval E et al. Journal of Materials Pro-cessing Technology[J], 2013, 213(2): 161
    8. Kim K H, Watanabe M, Mitsuishi K et al. Journal of Physics D: Applied Physics[J], 2009, 42(6): 065304
    9. Lee J G, Hong S J, Lee M K et al. Journal of Nuclear Materi-als[J], 2009, 395(1-3): 145
    10. Elrefaey A, Tillmann W Advanced Engineering Materials[J], 2009, 11(7): 556
    11. Li Junhan, Sun Ning, Ma Lan et al. Word Nonferrous Metals[J], 2020(14): 34
    12. Shi Changgen, Wang Yu, Xu Hong. Transactions of the China Welding Institution[J], 2012, 33(3): 109
    13. Yang M, Ma H H, Shen Z W. Journal of Materials Research and Technology[J], 2019, 8(6): 5572
    14. Kahraman N, Gülen? B, Findik F. Journals of Materials Pro-cessing Technology[J], 2005, 169(2): 127
    15. Manikandan P, Hokamoto K, Deribas AA et al. Materials Transactions[J], 2006, 47(8): 2049
    16. Wang Jian,Li Xiaojie,Dong Shouhua et al. The International Journal of Advanced Manufacturing Technology[J], 2022, 120: 6407
    17. Miao Guanghong, Ma Leiming, Wu Jianqiang et al. Blasting[J], 2020, 37(2): 106
    18. Zareie Rajani H R, Akbari Mousavi S A A. Materials Science and Engineering: A[J], 2012, 556: 454
    19. Shi Changgen, Zhao Linsheng, Hou Hongbao et al. Transac-tions of the China Welding Institution[J], 2014, 35(5): 88
    20. Ma Yong, Wang Tao, Wang Guoping et al. Materials Today Communications[J], 2023, 36:106880
    21. Bataev I A, Tanaka S, Zhou Q et al. Materials & Design[J], 2019, 169: 107649
    22. Wu Xiaoming, Shi Changgen, Gao Li et al. Rare Metal Materials and Engineering[J], 2023, 52(4): 1272
    23. Xu Junfeng. Research on evolution mechanisms of interfacial meso-structures in explosive welded bimetals[D]. He-fei:University of Science and Technology of China, 2023(in Chinese)
    24. Carpenter S H, Wittman R H. Annual Review of Materials Re-search[J], 1975, 5: 177
    25. Deribas A A, Zakharenko I D. Combustion, Explosion and Shock Waves[J], 1974, 10(3): 358
    26. Zakharenko I D, Zlobin B S. Combustion, Explosion and Shock Waves[J], 1983, 19(5): 689
    27. Wang Yuxin, Li Xiaojie, Yan Honghao et al. Engineering Blasting[J], 2018, 24(1): 1
    28. Li Xiaojie, Wang Yuxin, Wang Xiaohong et al. Engineering Blasting[J], 2020, 26(5): 1-13
    29. Koch A, Arnold N, Estermann M. Propellants Explosives Py-rotechnics[J], 2002, 27(6): 365
    30. Shi Changgen. The Lower Bound Theorem and Double Vertical Method of Explosive Welding[M].Beijing:Metallurgical In-dustry Press, 2015: 94
    31. Blazynski T Z. Explosive welding, forming and compac-tion[M].London: Application Science Publishers Ltd, 2012: 256
    32. Yang Xueshan, Pang Lijuan, Deng Gang et al. Iron Steel Vana-dium Titanium[J], 2024, 45(1): 78
    32.Yang Xueshan, Pang Lijuan, Deng Gang et al. Iron Steel Vanadium Titanium[J], 2024, 45(1): 78
    34. Fronczek D M, Chulist R, Litynsk-Dobrzynska L et al. Materi-als & Design[J], 2017, 130: 120
    35. Yang Ming, Zhang Bingyuan, Ma Honghao et al. Transactions of Nonferrous Metals Society of China[J], 2024, 34(5): 1588
    36. Han Shunchang.Phase transformation and fractography of interface of explosive welding[M].Beijing:National Defense Industry Press, 2011: 220
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文

史长根,姜佳林,王海涛,罗绪川,冯柯. TA1/Q235钛钢爆炸焊接数值模拟及实验[J].稀有金属材料与工程,,().[shichanggen, jiangjialin, wanghaitao, luoxuchuan, fengke. Numerical Simulation and Experiment of TA1/Q235 Ti-Steel Explosive Welding[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:13
  • 下载次数: 3
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-15
  • 最后修改日期:2024-12-04
  • 录用日期:2024-12-23