+高级检索
基于裂纹尖端塑性区的镍基单晶高温合金低周疲劳应力断口定量分析
作者:
作者单位:

1.中国航发北京航空材料研究院;2.南昌大学 物理与材料学院;3.西北工业大学 力学与土木建筑学院;4.南昌航空大学无损检测技术教育部重点实验室

基金项目:

国家科技重大专项(J2019-VI-0022-0138)


Quantitative Analysis of Low Cycle Fatigue Fracture Stress in Nickel-Based Single Crystal Superalloys based on crack tip plastic zone
Affiliation:

AECC Beijing Institute of Aeronautical Materials

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    低周疲劳失效是单晶涡轮叶片榫头部位主要的失效模式,由于实际工作载荷与设计载荷之间的差异,疲劳失效后往往需要给出导致疲劳失效的应力,而断口是载荷、温度的综合体现,对断口进行定量分析反推疲劳应力,在叶片失效分析中具有重要的工程应用价值。单晶高温合金特有的组织结构和晶体结构,使其疲劳断裂特征不同于多晶材料,单晶高温合金主要的疲劳断裂特征为滑移面,而非疲劳条带。本文提出了利用裂纹尖端塑性区进行定量分析的模型与方法。单晶高温合金疲劳断口与载荷之间有一定的角度,为复合型开裂模式,而非Ⅰ型开裂模式。针对单晶高温合金的开裂特点,本文利用DD6单晶高温合金在530 ℃、应变比r=0.05条件下的试验数据,分析了其不同寿命区间的滞后回线,结果表明:寿命在千次到万次之间,其滞后环非常狭窄;寿命大于万次,其滞后环基本为直线;表明DD6单晶高温合金在530 ℃,应变比r=0.05条件下具有小屈服的特点。基于此,针对低周疲劳断口,研究了裂纹萌生、扩展阶段特性及其断裂特征,建立了考虑复合型开裂和基于裂纹尖端塑性区rp的疲劳应力断口定量分析模型。利用3个试样的共12个裂纹位置a处rp进行了不同a处的疲劳应力断口定量分析,分析结果表明:疲劳萌生应力误差在1.3倍内、扩展第一阶段应力反推结果误差在1.5倍分散带内。研究结果对单晶高温合金主要以滑移面开裂(非疲劳条带)进行断口定量分析应力提供了模型和方法。

    Abstract:

    Low cycle fatigue failure is the main failure mode of tenon part of single crystal turbine blades. Due to the difference between the actual working load and the design load, the stress leading to fatigue failure often needs to be given after fatigue failure, and the fracture is a comprehensive reflection of load and temperature. Quantitative analysis of the fracture and inverse fatigue stress have important engineering application value in blade failure analysis. The unique microstructure and crystal structure of single superalloy make its fatigue fracture characteristics different from those of polycrystalline materials. The main fatigue fracture characteristics of single crystal superalloy are slip plane rather than fatigue band. A model and method for quantitative analysis of crack tip plastic zone are presented in this paper. There is a certain Angle between fatigue fracture and load of single superalloy, which is a composite cracking mode rather than a type Ⅰcracking mode. According to the cracking characteristics of single superalloy,, in this paper, using the test data of DD6 single-crystal high-temperature alloy under the condition of 530 ℃ and strain ratio r=0.05, the hysteresis return line of its different life intervals is analyzed, and the results show that: the life span is between one thousand and ten thousand times, and its hysteresis loop is very narrow; the life span is greater than ten thousand times, and its hysteresis loop is basically a straight line; it shows that DD6 single-crystal high-temperature alloy under the conditions of 530 ℃ and strain ratio r=0.05 has the small yielding characteristics. Based on this, for the low-week fatigue fracture, the characteristics of crack initiation and extension stage and its fracture characteristics were studied, and a quantitative analysis model of fatigue stress fracture was established by considering the composite cracking and based on rp in the plastic zone at the crack tip, use a total of 12 crack locations a for 3 specimens, the quantitative analysis of fatigue stress fractures at different a locations is carried out, and the analysis results show that the error of fatigue initiation stress was within 1.3 times, and that of inverse extrapolation result of the first stage of extension was within 1.5 times of the dispersion band. The results provide models and methods for quantitative fracture analysis of stresses in single-crystal high-temperature alloys mainly by slip-surface cracking (non-fatigue strips).

    参考文献
    [1] Li Jiarong (李嘉荣), Xie Hongji(谢洪吉), Han Mei(韩梅), Liu Shizhong(刘世忠).Acta Metall Sin(金属学报)[J],2019,55(9):1195.
    [2] Zhang Jingang(张金刚), Chen Xing(陈星), Li Zhen(李振), Tian Fuzheng(田福政), Liu Xinling(刘新灵).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2023,52(6):1985.
    [3] Tao Chunhu(陶春虎),Zhong Peidao(钟培道),Wang Renzhi(王仁智).Failure Analysis and Prevention for Rotor in Aero-Engine(航空发动机转动部件的失效与预防)[M]. Beijing:National Defense Industry Press, 2000.
    [4] Cao Gang(曹刚),Zhang Xuhui(张旭辉),Xu Tao(徐涛),et al. Hot Working Technology(热加工工艺)[J],2017,46(22):48.
    [5] Shi Zhenxue(史振学),Hu Yingtao(胡颖涛),Liu Shizhong(刘世忠).Materials For Mechanical Engineering(机械工程材料)[J],2021,45(3):16.
    [6] Luo Hongyun(骆红云),Chen Qiwu(陈其武),Liu Jie(刘洁). Journal of Changchun University of Technology(长春工业大学学报) [J],2022,43(Z1):324.
    [7] Zhang Bin, Wang Rongqiao, Liu Haiyan, et al. Engineering Fracture Mechanics [J],2023,281.
    [8] Huang Xiaoguang(黄小光),Wang Zhiqiang(王志强),Zhang Dainhao(张典豪),et al. Journal of Ship Mechanics(船舶力学)[J],2022,26(03):391.
    [9] Li Zhenwei(李振威),Wen Zhixun(温志勋),Wang ping(王平),et al. Failure Analysis and Prevention(失效分析与预防)[J],2023,1:001.
    [10] Wang Xin(王欣),Chen Xing(陈星),Hu Rengao(胡仁高),et al. Journal of Materials Engineering(材料工程)[J],2020,48(06):156.
    [11] Hou Xueqin(侯学勤),Fan Jinjuan(范金娟),Wang Zhanbin(王占彬).Journal of Iron and Steel Research International(钢铁研究学报) [J],2011,23(S2):470.
    [12] Liu Xinling(刘新灵),Zhang Zheng(张峥),Tao Chunhu(陶春虎).Fatigue Fractography Quantitative Analysis(疲劳断口定量分析)[M].Beijing:National Defense Industry Press,2010.
    [13] Hu Chunyan(胡春燕),Liu Xinling(刘新灵),Tao Chunhu(陶春虎).Failure Analysis and Prevention(失效分析与预防) [J],2014,9(04):224.
    [14] Hou Naixian, Yu Qingming, Wen Zhixun, et al. European Journal of Mechanics / A Solids[J],2009,29(4):611.
    [15] Yang Lihong(杨丽红),Wu Linzhi(吴林志),Qu Jia(曲嘉).Journal of Harbin Engineering University(哈尔滨工程大学学报)[J],2011,32(11):1434.
    [16] Li Zhengneng(郦正能).Yingyong Duanlie Lixue(应用断裂力学)[M]. Beijing:Beihang University Press,2012.
    [17] Guo Ping(郭萍),Zhao Yongqing(赵永庆),Hong Quan(洪权),et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(006).
    [18] Ma Yingjie(马英杰),Liu Jianrong(刘建荣),Lei Jiafeng(雷家峰),et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J],2009,19(10):1789.
    [19] Wu Xueren(吴学仁). Handbook of Mechanical Properties of Aircraft Structural Metals Vol.2 Damage Tolerance(飞机结构金属材料力学性能手册第2卷损伤容限)[M]. Beijing:Aviation Industry Press,1996:122.
    [20] Chinese Aeronautical Establishment(中国航空研究院).Stress Intensity Factors Handbook(应力强度因子手册)[M]. Beijing:Science Press,1993.
    [21] Cheng Ronghui(程荣辉).Mouxing Hangkong Fadongji Sheji Yong Cailiao Lixue Xingneng Shouce(某型航空发动机设计用材料力学性能手册)[M].Beijing:Aviation Industry Press,2019.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘新灵,邓志伟,田福政,王学云,李振.基于裂纹尖端塑性区的镍基单晶高温合金低周疲劳应力断口定量分析[J].稀有金属材料与工程,,().[Liu Xinling, Deng Zhiwei, Tian Fuzheng, Wang Xueyun, Li zhen. Quantitative Analysis of Low Cycle Fatigue Fracture Stress in Nickel-Based Single Crystal Superalloys based on crack tip plastic zone[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:2
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-12
  • 最后修改日期:2024-12-17
  • 录用日期:2024-12-20