+高级检索
多层多道次LDED工艺参数智能决策与多目标预测
DOI:
作者:
作者单位:

1.太原理工大学 机械工程学院;2.清华大学机械工程系;3.清华大学 机械工程系

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Intelligent parameter decision-making and multi-objective prediction in multi-layer and multi-pass LDED process
Author:
Affiliation:

1.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology;2.Department of Mechanical Engineering, Tsinghua University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表征多层多道次激光金属打印件形貌质量的主要参数是表面粗糙度和实际打印高度与理论模型高度之间的误差。本研究采用田口法建立工艺参数组合与金属打印形貌质量(高度误差和粗糙度)多目标表征之间的关联性。采用信噪比和灰色关联分析法预测多层多道次打印的最优参数组合:激光功率800 W、送粉速率0.3 r/min、步距1.6 mm、扫描速度20 mm/s。随后,构建遗传贝叶斯-反向传播网络(GB-BP)对多目标响应进行预测。与传统BP网络相比,GB-BP网络对高度误差和表面粗糙度的预测精度分别提高了43.14%和71.43%,该网络可以准确预测多层多道次LDED金属打印部件的形貌和质量的多目标表征。

    Abstract:

    The main parameters that characterize the morphology quality of multi-layer and multi-pass laser metal printed parts are the surface roughness and the error between the actual printing height and the theoretical model height. This study employed the Taguchi method to establish the correlation between process parameter combinations and multi-objective characterization of metal print morphology quality (height error and roughness). The signal-to-noise ratio (SNR) and grey correlation analysis method were used to predict the optimal parameter combination for multi-layer and multi-pass printing: laser power 800 W, powder feeding rate 0.3 r/min, step distance 1.6 mm, scanning speed 20 mm/s. Subsequently, we constructed the Genetic Bayesian-back propagation network (GB-BP) to predict multi-objective responses. Compared with the traditional BP network, the GB-BP network improved the accuracy of predicting height error and surface roughness by 43.14% and 71.43%, respectively. The network can accurately predict the multi-objective characterization of the morphology and quality of multi-layer and multi-pass LDED metal printed parts.

    参考文献
    相似文献
    引证文献
引用本文

李亚冠,聂振国,李荟林,王涛,黄庆学.多层多道次LDED工艺参数智能决策与多目标预测[J].稀有金属材料与工程,,().[Yaguan Li, Zhenguo Nie, Huilin Li, Tao Wang, Qingxue Huang. Intelligent parameter decision-making and multi-objective prediction in multi-layer and multi-pass LDED process[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-10
  • 最后修改日期:2025-02-27
  • 录用日期:2025-03-20
  • 在线发布日期:
  • 出版日期: