Abstract:Tungsten copper composite for sputtering materials was fabricated by sintering a tungsten skeleton at high temperature under the vacuum condition followed by infiltration of copper. The effect of sintering temperature on microstructures and properties of the tungsten skeleton and the tungsten copper composite were investigated. The results show that with increasing of the sintering temperature, the point touch becomes face touch between tungsten particles; the sintering necks grow and the pores reduce to sphericity gradually. Meanwhile, the relative density and hardness of the tungsten skeleton and the tungsten copper composite increase constantly and the electric conductivity of the composite decreases correspondingly. When sintered at 1950 oC, the relative density of the tungsten skeleton and the tungsten copper composite reaches the maximum of 74.8% and 96.9%, respectively; the hardness (HB) of the tungsten copper composite gets the maximum of 2520 MPa, while its electrical conductivity reduces to 36.6IACS%; moreover, its oxygen content is only 4×10-6 and the nitrogen content is 3×10-6.