Abstract:Aluminum-based composites, using Al72Ni12Co16 decagonal quasicrystalline as reinforcing particles and pure Al and Al-5.5%Zn alloys (mass fraction) as base alloy, were fabricated. The microstructure and the particle distribution of the composite were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrum (EDS). Results show that the phase transition occurs because the decagonal quaicrystalline particles are unstable in the melt. Regular polygon-like θ-phase distributes in the Al matrix, with particle sizes mainly ranging from 3.45-40 μm. At the same time, fine strip-like γ-phase with the size of 1.15-8.57 μm are formed along the grain boundaries. Mechanical property testing results reveal that, due to the existence of the final crystallized phases, yield strength, ultimate tensile strength and Young’s modulus of the composites are improved, but the elongation is decreased rapidly.