Abstract:This paper mainly aims at 7050 aluminum alloy to study the tensile mechanical performance of the plate with hole through testing and finite-element simulation. Then the cold working effects of different interferences (ranging from 0% to 11.11%) were compared and analyzed. Results show that compared with the standard specimens of 7050 aluminum alloy, for the plates with holes, their apparent strength, coefficient of elongation and modulus of elasticity are reduced, but the strains at plastic instability points are improved to a large extent. Cold working enhances the yield strength of the material around hole wall and improves the stress state of hole surface which make for peak stress weakened and enlarge the plane strain range along thickness direction of the hole. Meanwhile, the change of the tensile fracture with the cold working deformation degree present a regularity. Residual stress increases with interference increasing, and the position of peak stress transfers far from the wall of the hole along radial direction with interference increasing