Abstract:The influences of two homogenization temperatures on the microstructure, Nb segregation and stress-rupture properties of a K4169 alloy have been investigated. The results reveal that the amount of Laves phase decreases with the increasing of the homogenization temperature. Nb still segregates strongly in the interdendritic region after homogenization heat treatment at 1120 ℃. As the temperature raises to 1160 ℃, the microsegregation of Nb is improved distinctly. Meanwhile, Widmanstaten structure and granule-like δ phase are observed after solid solution and aging treatment, and a larger volume fraction of γ′′ phase is observed in the specimen homogenized at 1160 ℃. The investigation of stress-rupture property under the condition of 650 ℃/620 MPa suggests that with the increase of the homogenization temperature, the rupture life is enhanced evidently, while the elongation decreases. Additionally, the type of fracture changes from trans-granular ductile fracture to a mixture of trans-granular and inter-granular brittle fractures.