Abstract:The microstructures and the mechanical properties of the Mg-2Y-xZn (x = 1, 2, 3 at%) alloys in as-cast, as-annealed and as-extruded conditions have been investigated. The results show that the 18R-LPSO phases are distributed in a continuous network mainly along the grain boundaries in the alloy with 1 at% Zn. With increasing of Zn content, the 18R-LPSO phase and W-phase coexist in Mg-2Y-2Zn alloy but only W-phase remains in Mg-2Y-3Zn alloy. The 14H-lamellas are precipitated from the block-shaped 18R-LPSO phases into the matrix, and W-phases are broken into particles during homogenizing annealing. After extrusion, the LPSO phases and W-particles are rearranged along the direction of extrusion. The tensile tests show that the as-extruded Mg-2Y-1Zn alloy exhibits the supreme UTS of 320 MPa, with an elongation of 11.2% at room temperature