Abstract:In order to identify the failure mechanism of the IPMC and prolong service life, researching the prepared Ag-IPMC to analyze the changes of surface chemical components before and after the failure of IPMC. Three parts of active Ag-IPMC surfaces and five inactive Ag-IPMC surfaces selected were spectroscopy scanned by EDS to analyze the change rules of surface chemical components before and after the failure of IPMC and study the influence of changes of surface chemical components on movement failure. Results indicate that there was no oxide of Ag in the clad layer of active Ag-IPMC surfaces, and the Ag clad layer had a fine electrical conductivity, which provided an environment of steady electric field for the ion exchange in inophragma; the Ag content of inactive Ag-IPMC surfaces decreased, and Ag in clad layer reacted with O and S under the function of current, which generated the oxides and sulfides, making the structure of clad layer generate the phenomenon similar to fracture, and the increase of contact resistance of Ag-IPMC surfaces leaded to the failure of Ag-IPMC.