Abstract:The ordering behavior and the mechanical properties come from the doped element of the L12 type Al3Sc-based intermetallics were studied by using sublattice model supported with first-principles calculations. The results show that the intermetallics Al3Sc is fully ordered intermetallics, where Al atoms always occupy the 3c sublattice and Sc atoms always occupy the 1a sublattice. L12-Al3(Sc0.75M0.25) intermetallics(where M=Y, Ti, Zr and Hf)is fully ordered intermetallics, where M always occupy the 1a sublattice. The site preferences of these alloying elements are independent of the heat treatment temperature. L12-Al3(Sc0.75M0.25) intermetallics satisfy the mechanical stability conditions.The shear modulus, elastic modulus, young"s modulus and the hardness of L12-Al3(Sc0.75Y0.25) intermetallics are are smaller than L12-Al3Sc. The shear modulus, elastic modulus, young"s modulus and the hardness of L12-Al3(Sc0.75M0.25) intermetallics, where M=Ti, Zr or Hf, decrease with the increasing of the atomic radius. L12-Al3(Sc0.75Ti0.25) has the best plasticity and toughness compared with other L12-Al3(Sc0.75M0.25).