Abstract:Crystallographic orientation and microstructure of the 0.5mm thick cold-rolled annealed molybdenum sheets for vacuum electron devices were analysed by electron back-scattered diffraction (EBSD) and metallography, and their correlation with mechanical performance was discussed. The molybdenum sheets with excellent processability have some characteristics: grain orientation distribution which is relatively weaker and more diffused, mainly consists of α-fiber and γ-fiber texture. In the α-fiber texture, rotation cubic {001}<110> is the maximum component, and an amount of {112}<110> exists. Observed microstructures are mostly flat cloud-flake grains arrayed orderly along rolling direction and paralleled to rolling surface. Relatively less high-angle boundaries with θ> 50° are detected. Therefore, the Mo sheets show higher yield ratio and elongation, and weaker elongation anisotropy in RD, TD, and 45°-RD directions, i.e. excellent strength and toughness matching.