+Advanced Search
Hot deformation behaviors of Fe-microalloyed Ti-6Al-4V based on experiments and calculations
Author:
Affiliation:

College of Materials Science and Engineering, Nanjing Tech University

Clc Number:

TG

Fund Project:

The International S&T Cooperation Program of China (2015DFA51430); The National Natural Science Foundation of China (11647162)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Our previous results have shown that comprehensive mechanical properties of titanium alloys can be effectively improved by addition of Fe[1]. We systematically investigate hot deformation behaviors of Ti-6Al-4V-0.35Fe in this study, which is significant to improve plastic deformation ability of titanium alloys. In experiment, we use a Gleeble 3800 thermo-mechanical simulator to obtain the relationship between thermomechanical parameters and flow stress in a range of temperatures (800-950 °C) and strain rates (0.001-10 s-1). The single-peak profiles of the flow curves indicate that dynamic recrystallization (DRX) mechanism dominates the deformation. TEM analysis indicate that the grain size in DRX changes under different deformation temperatures, and finer grains are formed at relatively lower temperature due to the dynamic globularization. The dislocation walls are formed in subgrain boundaries due to dislocation slipping-climbing. The Avrami-type DRX model and the strain compensated multivariable regression model have been applied to fit the experimental stress-strain data during hot deformation. A comparative study between these two types of constitutive models is conducted to represent the flow behavior. It is found that both models have good accuracy in predicting the flow stress of Ti-6Al-4V-0.35Fe alloy. A processing map based on dynamic material model (DMM) at the strain of 0.8 (steady-state flow stage) has been established to identify the flow instability regions and stability regions. The strain rate range of stability region is 0.001-0.6s-1 which has been expanded compared to the range of 0.0003-0.1s-1 of Ti-6Al-4V. Optimal hot working parameters are confirmed to be 920-950 °C and 0.001-0.005 s-1, and nearly complete DRX has taken place. Our results indicate that hot working property of Fe-microalloyed Ti-6Al-4V is better than that of Ti-6Al-4V alloy in 800-950 °C temperature scale, and processing cost has been decreased.

    Reference
    Related
    Cited by
Get Citation

[Liu Xin, Zhu Xiaoxian, Guo Yanhua, Dong Yuecheng, Dan Zhenhua, Chang Hui, Zhou Lian. Hot deformation behaviors of Fe-microalloyed Ti-6Al-4V based on experiments and calculations[J]. Rare Metal Materials and Engineering,2019,48(11):3476~3486.]
DOI:10.12442/j. issn.1002-185X.20180491

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 14,2018
  • Revised:July 26,2018
  • Adopted:August 31,2018
  • Online: December 10,2019
  • Published: