Abstract:To expand titanium alloy and Ni-based superalloy application fields, the prepration of titanium alloy/Ni-based superalloy composite joints is necessary. In this study, transient liquid phase (TLP) bonding has been successfully developed to join TC4 and GH4169 using Ti/Ni composite foils as interlayer. The microstructure, mechanical properties and formation mechanism of joint were investigated. The interfaces, fracture, composition and phases of as-prepared TC4/GH4169 joints were analyzed by scanning electronic microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction(XRD), as well as shear strength and microhardness of joints were tested by universal testing machine and microhardness tester, respectively. The results showed that element interdiffusions and chemical reactions took place in the joining zone and multiple interlayer gradient structure, i.e. “Ni(s,s) / TiNi<sub>3</sub>/ Ti<sub>2</sub>Ni/ Ti/ Ti<sub>2</sub>Ni/ Ni/ TiNi”, was formed between GH4169 and TC4 under the process parameters of 960℃, 5MPa, 30min. The joint was compact with continuous interfacial bonding without obvious defects except some pores and microcracks exist in the interface of “Ni/ TiNi+Ti<sub>2</sub>Ni”. Hardness of each part of the prepared joint is not uniform, among them, the residual Ti and Ni interlayers have lower hardness, which is beneficial to alleviate the internal stress, the peak value appeared in the GH4169 side as a result of the formation of Ni(s,s) and TiNi<sub>3</sub>. Combined with the shear test, fracture morphology and phase analysis, the shear strength of as-prepared TC4/GH4169 joints achieved 124.6MPa and fracture occurs in the interface of “Ni/ TiNi+ Ti<sub>2</sub>Ni”, which presented a brittle characteristic.