Abstract:In this paper, the microstructure and mechanical properties of a high strength titanium alloy (Ti–6Al–6Mo–4V) were firstly investigated. The relationship between microstructures and properties of the alloys were investigated after solution treatment at α/β and β regions and then aging at five different temperatures ranging from 460℃ to 620℃ for 6h. The results illustrate the alloys after α/β region solution treatment and aging show a more attractive combination of strength and elongation than β solution treatment and aging. After solution treatment at 850℃ (α/β region) and aging at 460℃, the alloy obtains the highest strength (1572MPa) with elongation (2.63%). When aging at 620℃, the alloy obtains the highest elongation (11.46%) but lower strength (1201MPa). After solution treatment at 825℃ plus aging at 540℃, this alloy reaches a great combination of strength (1328MPa) and elongation (7.58%).Meanwhile, due to the large β grains after β region solution treatment and fine secondary α forms during aging, it does not obtain an attractive strength after β region solution treatment plus aging.