Abstract:This paper aims at investigating the mechanical properties and texture evolution of extruded AZ31 magnesium alloy rods under cyclic torsion. Thus, cyclic torsion tests were performed at different temperatures such as room temperature, 373, 443, 503, and 573K, respectively. Measured mechanical properties of magnesium alloy cyclic torsion revealed that, stress-strain hysteresis loops of cyclic torsions were strictly symmetric which means that the dominant deformation mechanism is sliding. Additionally, due to the thermal influence of cyclic torsion, the peak stresses in stress-strain hysteresis loops were decreased with the increase of number of cycles. The grain orientations were changed due to the activation of prismatic slips. The texture of {11-20} prismatic planes perpendicular to ED in initial rods was transformed into the texture of {10-10} prismatic planes after cyclic torsion. Also, two types of grain orientation variations occurred due to the activation of extension twin.