Abstract:In order to ensure the safety and operation of long-term orbiting spacecraft, and to improve the protection performance of the shielding configuration in response to the hypervelocity impact of small space debris, it is necessary to optimize and improve the bumper materials. In this paper, the SiC/Al composite bumper material is prepared by pressure infiltration in the SiC porous ceramic pre-sintered body, and the space debris hypervelocity impact experiment of the SiC/Al bumper configuration is carried out on a two-stage light-gas gun. The impact damage behavior of the SiC/Al bumper material, the structural characteristics of the secondary debris cloud, and the impact damage feature of the rear wall are investigated in this paper. The research results show that the SiC/Al bumper could broken the space debris into smaller debris than traditional Al-alloy bumper did, and the expanded secondary debris cloud structure was formed behind the SiC/Al bumper. Based on the SEM damage morphology analysis of the impact craters on the rear wall, with the increase of the impact velocity of space debris, a more significant impact phenomenon of secondary debris in the liquid phase occurred, and the protection performance of shielding configuration was enhanced accordingly.