Abstract:In order to study the optimal combination of Ti-6Al-4V (TC4) alloy with silicon carbide (SiC) ceramics and ultra-high molecular weight polyethylene (UHMWPE) in composite armor, the penetration resistance and macro-damage of the complex material with composite structure of SiC/UHMWPE/TC4 (I) and SiC/TC4/UHMWPE (II) were analyzed, and the micro-damage of TC4 alloy was also discussed. Results show that the bullet hole edges of TC4 alloy in composite structure I are relatively smooth without cracks, and there are a few adiabatic shear bands (ASBs) propagated along the straight lines. The bullet hole edges of TC4 alloy in composite structure II are rough, and there are cracks and spalling damage. There are many curved and bifurcated ASBs in composite structure II. The penetration process of TC4 alloy in composite structure II includes the pit opening stage, stable penetration stage, and perforation stage. The adiabatic shear behavior of TC4 alloy in composite structure II is more complicated than that in composite structure Ⅰ, resulting in more energy consumption. In addition, the tensile failure caused by UHMWPE in the composite structure II is also one of characteristics of the high energy consumption failure mode. Therefore, the SiC/TC4/UHMWPE composite structure can efficiently exert the energy consumption mechanisms of TC4 alloy and UHMWPE, and the anti-penetration performance of the complex armor with this composite structure is better than that with the composite structure Ⅰ.