+Advanced Search
The Influence of Particle Size and Interface Atom Adjustment on the Strength of SiC/Al Composite
Affiliation:

Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute

Clc Number:

TB383

Fund Project:

State Grid Corporation of China Science and Technology Guide Project (SGZJ0000KXJS2100125)

  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    As a kind of light and high strength material, SiC/Al composite has been widely concerned because of its excellent physical and chemical properties. In this study, molecular dynamics methods were used to construct SiC/Al composite material models with different SiC particle sizes. The results of tensile deformation simulation show that smaller SiC particle size is beneficial to higher tensile strength. As the tensile deformation gradually increases, the SiC particles are separated from the Al matrix on both sides along the tensile direction to generate voids, and then dislocations are generated from the void defects to nucleate and expand into the matrix to form plastic deformation. After adjusting the occupancy of C and Si on the SiC/Al interface, it is found that the bonding is stronger when the interface is rich in Si, and the generation of voids is more difficult, which strengthens the SiC/Al composite material.

    Reference
    [1] Fan C, Yang S, Zhu M, Bai Y. Microstructure and Fatigue Properties of 6061 Aluminum Alloy Laser-MIG Hybrid Welding Joint[J]. Advances in Materials Science and Engineering, 2021, 2021(2): 1-12.
    [2] Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites[J]. Scripta Metallurgica Et Materialia, 1991, 25(1): 33-38.
    [3] Quan Y M, Zhou Z H, Ye B Y. Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle[J]. Journal of Materials Processing Technology, 1999, 91(1): 231-235.
    [4] Cheng D F, Niu J T, Gao Z, Wang P. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites[J]. Modern Physics Letters B, 2015, 29(6n07): 1540002.
    [5] Gnjidi Z, Bozi D, Mitkov M. The influence of SiC particles on the compressive properties of metal matrix composites[J]. Materials Characterization, 2001, 47(2): 129-138.
    [6] Roebuck B. Fractography of a SiC particulate reinforced aluminium metal matrix composite[J]. Journal of Materials Science Letters, 1987, 6(10): 1138-1140.
    [7] Yousefi R, Kouchakzadeh M A, Rahiminasab J, Kadivar M. The Influence of SiC Particles on Tool Wear in Machining of Al/SiC Metal Matrix Composites Produced by Powder Extrusion[J]. Advanced Materials Research, 2011, 325: 393-399.
    [8] Wu H B, Li J Z, Li D F, Liu D G. Microstructures and Properties of Spinning for Silicon Carbide Particle Reinforced Aluminum Composite[J]. Materials Science Forum, 2019, 944(PT.1): 571-580.
    [9] Bathula S, Anandani R C, Dhar A, Srivastava A K. Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering[J]. Materials Science Engineering A, 2012, 545(May 30): 97-102.
    [10] Sun F H, Li X K, Wang Y, Chen M. Studies on the Grinding Characteristics of SiC Particle Reinforced Aluminum-Based MMCs[J]. Key Engineering Materials, 2006, 304-305: 261-265.
    [11] Zhang F H, Wang K, Fu P Q, Wu M N. Research on Grinding of Silicon Particles Reinforced Aluminum Matrix Composites with High Volume Fraction[J]. Advanced Materials Research, 2014, 1017: 98-103.
    [12] Han H H, Wang A Q, Xie J P. Research status on SiC and Si hybrid particle reinforced Al matrix composites[J]. Powder Metallurgy Industry, 2015.
    [13] Zhou Y. Main Preparation Processes and Research Status of Si C Particle Reinforced Aluminum Matrix Composites[J]. Tool Engineering, 2017.
    [14] Cui Y, Geng L, Yao Z K, Peng H Y, Li D X. A New Advance in the Development of High-performance SiCp/Al Composite[J]. Journal of Materials Science Technology, 1997(03): 227-229.
    [15] Gu H, Jiao J W, Li Z. Molecular dynamics simulation of tensile behavior on ceramic particles reinforced aluminum matrix nanocomposites[J]. International Journal of Materials Science and Applications, 2016, 5(3).
    [16] Gu H, Gao X L, Li X C. Molecular Dynamics Study on Mechanical Properties and Interfacial Morphology of an Aluminum Matrix Nanocomposite Reinforced by β-Silicon Carbide Nanoparticles[J]. Journal of Computational Theoretical Nanoscience, 2009, 6(1): 61-72.
    [17] Plimpton S J. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
    [18] Plimpton S J, Thompson A P. Computational aspects of many-body potentials[J]. MRS Bulletin, 2012, 37(5): 513-521.
    [19] Brown W M, Peng W, Plimpton S J, Tharrington A N. Implementing molecular dynamics on hybrid high performance computers – short range forces[J]. Computer Physics Communications, 2011, 182(4): 898-911.
    [20] Brown W M, Kohlmeyer A, Plimpton S J, Tharrington A N. Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh[J]. Computer Physics Communications, 2012, 183(3): 449-459.
    [21] Johnson R A. Alloy models with the embedded-atom method[J]. Physical Review B Condensed Matter, 1989, 39(17): 12554-12559.
    [22] Johnson R A. Phase stability of fcc alloys with the embedded-atom method[J]. Phys Rev B Condens Matter, 1990, 41(14): 9717-9720.
    [23] Du J P, Wang C Y, Yu T. Construction and application of multi-element EAM potential (Ni–Al–Re) in γ/γ′ Ni-based single crystal superalloys[J]. Modelling Simul.mater.sci.eng, 2012, 21(1): 015007.
    [24] Yan W J, Gao T H, Guo X T, Qin Y X, Quan X. Melting kinetics of bulk SiC using molecular dynamics simulation[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(9): 1699-1704.
    [25] Schaible M. Empirical Molecular Dynamics Modeling of Silicon and Silicon Dioxide: A Review[J]. Critical Reviews in Solid State and Materials Science, 1999, 24(4): 265.
    [26] Fei G, Weber W J, Posselt M, Belko V I. Atomistic study of intrinsic defect migration in 3C-SiC[J]. Physical Review B Condensed Matter, 2004, 69(24): 1681-1685.
    [27] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Phys Rev B Condens Matter, 1989, 39(8): 5566-5568.
    [28] Dixit S, Mahata A, Mahapatra D R, Kailas S V, Chattopadhyay K. Multi-layer graphene reinforced aluminum - Manufacturing of high strength composite by friction stir alloying[J]. Composites, Part B. Engineering, 2018, 136B(Mar.): 63-71.
    [29] Zhou A(邹爱华), Zhou X L(周贤良), Kang Z B(康志兵), et. Al . Alloy elements on SiC/Al interface: a first-principle and experimental study(基体合金元素对SiC/Al界面结合影响的第一性原理及实验研究)[J]. Journal of Inorganic Materials, 2019, 34(11): 1167-1174.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[He Wei, Wu Hao, Li Dege, Wang Limin, Chen Shengnan, Yan Jiasi, Xiao Wei, Yang Hui. The Influence of Particle Size and Interface Atom Adjustment on the Strength of SiC/Al Composite[J]. Rare Metal Materials and Engineering,2023,52(1):139~144.]
DOI:10.12442/j. issn.1002-185X.20211115

Copy
Article Metrics
  • Abstract:517
  • PDF: 1135
  • HTML: 102
  • Cited by: 0
History
  • Received:December 14,2021
  • Revised:April 14,2022
  • Adopted:April 25,2022
  • Online: February 13,2023
  • Published: February 08,2023