+Advanced Search
Corrosion Behavior of Long-Term Aged N10276 Alloy in CO2/H2S/Cl- Environments
Affiliation:

1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan 030003, China;3.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

Fund Project:

National Natural Science Foundation of China (52071227); Special Found Projects for Central Government Guidance to Local Science and Technology Development (YDZX20181400002967); Key Scientific Research Project in Shanxi Province (201805D121003, 201903D111008, 201901D111460, 202003D111001); Science and Technology Major Projects of Shanxi Province (20191102004, 20201102017)

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The corrosion mechanism of the N10276 alloy before and after long-term aging treatment in aqueous solutions containing CO2/Cl- and CO2/H2S/Cl- was studied through the electrochemical impedance plots and cyclic potentiodynamic polarization. Results reveal that a not-well-defined capacitive loop appears in the low-frequency range and it changes into Warburg's impedance as the H2S concentration increases (10~100 μL/L) due to the large quantities of H2S-related adsorbed species in the film. In addition, H2S concentration plays a key role in increasing corrosion rate. In comparison, the action of long-term aging is more significant on pitting corrosion. The surrounding sites of the precipitates become the preferred corrosion area since the austenite microstructure of long-term aged N10276 alloy includes lots of precipitated second phases (μ phase with accumulation of Mo and Ni elements), leading to the occurrence of pitting defects.

    Reference
    [1] Liu Z G, Gao X H, Du L X et al. Materials and Corrosion[J], 2016, 68(5): 566
    [2] Wang Xia, Zhou Wenjie, Hou Duo et al. Rare Metal Materials and Engineering[J], 2020, 49(11): 3734
    [3] Wen Xiangli, Bai Pengpeng, Luo Bingwei et al. Corrosion Science[J], 2018, 139:124
    [4] Chen Changfeng, Jiang Ruijing, Zhang Guoan et al. Rare Metal Materials and Engineering[J], 2010, 39(3): 427 (in Chinese)
    [5] Bai Z Q, Yin Z F, Wei D et al. Materials and Corrosion[J], 2010, 61(8): 689
    [6] Bana? J, Lelek-Borkowska U, Mazurkiewicz B et al. Electrochimica Acta[J], 2007, 52(18): 5704
    [7] Zhang Zhi, Zhang Naiyan, Liu Zhiwei et al. Materials and Corrosion[J], 2018, 69(3): 386
    [8] Zhang G A, Zeng Y, Guo X P et al. Corrosion Science[J], 2012, 65: 37
    [9] Zhang Jie, Li Bowen, Li Yanhui et al. International Journal of Hydrogen Energy[J], 2021, 46(42): 22 222
    [10] Qiu Zhijun, Wu Bintao, Zhu Hanliang et al. Materials & Design[J], 2020, 195: 109 007
    [11] Bal K S, Majumdar J D, Choudhury A R. Corrosion Science[J], 2019, 175: 406
    [12] Aydo?du G H, Aydinol M K. Corrosion Science[J], 2006, 48(11): 3565
    [13] Wang Jiaxu, Shi Wei, Xiang Song et al. Corrosion Science[J], 2021, 181: 109 234
    [14] Vignal V, Zhang H, Delrue O et al. Corrosion Science[J], 2011, 53(3): 894
    [15] Zhang Chi, Zhang Liwen, Shen Wenfei et al. Journal of Alloys and Compounds[J], 2017, 728: 1269
    [16] Pu Enxiang, Zheng Wenjie, Song Zhigang et al. Materials Science and Engineering A[J], 2018, 714: 59
    [17] Ramkumar K D, Joshi V, Pandit S et al. Materials & Design[J], 2014, 64: 775
    [18] Ma Houyi, Cheng Xiaoliang, Li Guiqiu et al. Corrosion Science[J], 2000, 42(10): 1669
    [19] Keddam M, Mottos O R, Takenouti H. Chemischer Informationsdienst[J], 1981, 12(23): 257
    [20] Skale S, Dolecek V, Slemnik M S. Corrosion Science[J], 2007, 49(3): 1045
    [21] Zhang Shaohua, Hou Lifeng, Du Huanyun et al. Corrosion[J], 2019, 75(9): 1034
    [22] Yamina B, Kamel B, Marie T et al. Materials and Corrosion[J], 2019, 70(2): 206
    [23] Luo H, Dong C F, Li X G et al. Electrochimica Acta[J], 2012, 64: 211
    [24] Hesketh J, Dickinson E, Martin M L et al. Corrosion Science[J], 2021, 184: 109 265
    [25] Onyeji L, Mohammed S, Kale G. Corrosion Science[J], 2018, 138: 146
    [26] Li Longyi, Yan Jing, Xiao Jie et al. Corrosion Science[J], 2021, 187: 109 472
    [27] Mills D J. Progress in Organic Coatings[J], 1995, 26(1): 73
    [28] Sun Li, Sun Yangting, Lv Chenxi et al. Corrosion Science[J], 2021, 185: 109 432
    [29] Meguid E A A E, Latif A A A E. Corrosion Science[J], 2007, 49(2): 263
    [30] Kolotyrkin J M. Journal of the Electrochemical Society[J], 1961, 108(3): 209
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[wangxinchao, wangyan, houlifeng, zhangshaohua, liubaosheng, weiyinghui. Corrosion Behavior of Long-Term Aged N10276 Alloy in CO2/H2S/Cl- Environments[J]. Rare Metal Materials and Engineering,2022,51(8):2754~2760.]
DOI:10.12442/j. issn.1002-185X.20220029

Copy
Article Metrics
  • Abstract:446
  • PDF: 1060
  • HTML: 247
  • Cited by: 0
History
  • Received:January 13,2022
  • Revised:January 28,2022
  • Adopted:February 09,2022
  • Online: August 31,2022
  • Published: August 29,2022