Abstract:In order to improve the hot workability of TC17 titanium alloy, TC17 titanium alloy was hydrogenated. Through metallographic observation and X-ray diffraction analysis, the microstructure and phase transformation law of TC17 titanium alloy were studied after hydrogenated treatment. Under the conditions of deformation temperature of 800-860℃ and strain rate of 0.001-0.1s-1, the isothermal compression tests of hydrogenated TC17 titanium alloy were carried out. The deformation behavior of the hydrogenated TC17 titanium alloy was studied, and the thermal activation energy was calculated and analyzed. The results show that the microstructure of TC17 titanium alloy is a typical net basket structure, which is composed of α+β phase composition. With the increasing of hydrogen content, the volume fraction of acicular α phase decreases, and the volume fraction of β phase increases. When the hydrogen content exceeds 0.40wt%, the γ and δ hydrides separate out. The hydrogenated TC17 titanium alloy is not only a temperature sensitive material, a rate sensitive material, but also a hydrogen content sensitive material. When the hydrogen content is 0.2wt%, the peak stress reaches the minimum value. Compared with the original alloy, the deformation temperature can be deincreased by 40℃ and the strain rate can be increased by one order of magnitude. At the same time, the thermal activation energy of TC17 titanium alloy with 0.2wt% hydrogen content also reaches the minimum value of 162KJ/mol, and its thermal deformation softening mechanism was dynamic recovery.