Abstract:Ni-Cr alloy cladding layers with Cr contents of 10wt%, 20wt%, and 40wt% were prepared by laser melting technique and their high temperature oxidation characteristics at 900 °C and hot corrosion characteristics in Na2SO4+25wt% K2SO4 mixed salt at 600 °C were investigated. The results show that the Cr content plays a key role in the high temperature characteristics of cladding layers. Increasing the Cr content is more effective in improving the resistance of cladding layers to sulfate-induced hot corrosion than in improving the resistance to cyclic high-temperature oxidation. Cr40 provides the best resistance to high-temperature oxidation and hot corrosion. The oxidation products of Cr10 are dominated by NiO, which is extremely easy to shed and the internal oxidation is serious. Although a single Cr2O3 layer can be formed on the Cr40 surface, cracking within the Cr-rich oxides caused by thermal and growth stresses renders the resistance of Cr40 to cyclic high-temperature oxidation only slightly better than that of Cr20. Suffering from hot corrosion, the surface of Cr10 presents lamellar NiO and Ni3S2 stacked distribution of corrosion products, and Ni sulfide is also generated in the inner corrosion zone. The Cr2O3 layer on Cr20 surface is destroyed, and internal corrosion is severe, generating CrS. A dense protective Cr2O3 layer is generated on Cr40 surface, efficiently preventing further corrosion.