Abstract:To investigate the effect of longitudinal wave rolling (LR) on the texture of AZ31B magnesium alloy sheet, the AZ31B magnesium alloy sheet was heat treated at 400℃/20min and 450℃/20min, with amplitude of 0.35mm and period of 4mm, longitudinal-wave roll and flat-roll rolling. XRD was used to characterize the macro texture of the heat-treated and rolled plates, and the texture evolution was analyzed by polar diagram and ODF. Meanwhile, the deformation behavior of the metal in the rolling deformation zone was simulated. The results show that the peak texture intensity of (0002) at 400℃ decreases from 11.21 to 8.41, and at 450℃ to 7.08. The texture intensity at 450℃ is weaker than that at 400℃. After longitudinal-wave rolling, the substrate texture of the plate is weakened significantly, and a large number of grains are deflected towards RD and TD,with a maximum deflection of 30° towards RD and 40° towards TD. The peak texture intensity of (0002) decreases to 4.33 at 400℃ and 5.62 at 450℃. The texture weakening effect is more obvious at 400℃ than at 450℃. After two passes of rolling, the texture intensity of the base surface at 450℃ is weaker than that at 400℃. The analysis shows that: LR makes the C-axis orientation of grains deflect from ND to TD and RD. The reason is that there is a " cross-shear zone" similar to that in the process of induction rolling in the process of p-wave rolling, in which the shear force prompts grains along the RD direction. While there is also metal flow and shear force similar to the hetero-tooth combined deformation process and the bending and flattening combined deformation technology. This results in a deflection of grain orientation along the direction of TD.