+Advanced Search
Numerical simulation and experimental study on progressive bending of magnesium alloy grid panel with variable curvature
Author:
Affiliation:

School of Materials Science and Engineering,Shenyang Ligong University

Clc Number:

TG301

Fund Project:

Numerical simulation and experimental study on progressive bending of magnesium alloy grid panel with variable curvature

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Numerical simulation method was used to study material flow law of magnesium alloy variable curvature panel formed by progressive bending technology (PBT). The experimental is completed, and several types of magnesium alloy variable curvature panel are obtained. The curvature radius of panel range is from 205.7 mm to 72.56 mm. The suitable process parameters for progressive bending of magnesium alloy variable curvature panel are determined. The results show that curvature radius of panel is related to amount of press height. As press height increases, radius of curvature of panel decreases. With increase of press height, absolute deviation between simulation results and experimental results decreases, and relative error increases. With increase of curvature radius of panel, absolute error increases and relative error decreases. For internal grid panel of magnesium alloy, and maximum relative error is 5.22%. For outer grid panel of magnesium alloy, and maximum relative error is 5.51%. The generatrix straightness method was used to evaluate the degree of concave defects on surface of magnesium alloy panel. With the curvature radius of panel decreased, the generatrix straightness deviation increased, and the generatrix straightness coefficient increased. When curvature radius of panel is 72.56 mm, the maximum deviation of generatrix straightness is 0.083 mm, and the corresponding maximum value of generatrix straightness coefficient is 0.237%.

    Reference
    [1] Livi F, Puccini G. Methods of manufacturing a stiffening element for an aircraft skin panel and a skin panel provided with the stiffening element: US, US20030168555 A1[P]. 2003.
    [2] Fawaz S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices[J]. Fatigue Fracture of Engineering Materials Structures, 2010, 26(3):279-290.
    [3] De-Hua HE, Dong-Sheng LI, Xiao-Qiang LI, et al. Optimization on spring-back reduction in cold stretch forming of titanium-alloy aircraft skin[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12):2350-2357.
    [4]王磊, 李鹤, 许良, 回丽. 某飞机腹板构件结构改进及试验验证[J]. 航空制造技术, 2018, 61(Z2): 64-68.WANG Lei, LI He, XU Liang, HUI Li. Structure Improvement and Experimental Validation of Aircraft Web Plate. Aerospace Manufacturing Technology, 2018, 61(Z2): 64-68.
    [5]薛克敏, 汪会干, 解修明, 严思梁, 王路生, 李萍. Ti55钛合金整体壁板电脉冲辅助压弯成形失稳研究[J]. 稀有金属材料与工程, 2021, 50(05):1787-1794.Xue Kemin, Wang Huigan, Xie Xiuming, Yan Siliang, Wang Lusheng, Li Ping. Study on Instability of Ti55 Titanium Alloy Monolithic Panel by Electric Pulse Assisted Bending[J]. Rare Metal Materials and Engineering, 2021, 50(05): 1787-1794.
    [6]李烨琪, 刘劲松, 刘婷, 王煜, 堵同亮, 宋鸿武, 张士宏. 整体壁板离散填料滚弯成形有限元模拟[J]. 锻压技术, 2020, 45(02):106-112.Li Yeqi, Liu Jinsong, Liu Ting,Wang Yu, Du Tongliang, Song Hongwu, Zhang Shihong. Finite element simulation on discrete filling rolling for integral panel skins [J]. Forging & Stamping Technology, 2020, 45(02):- 106-112.
    [7]刘纯国, 岳韬, 崔琪. 铝合金壁板筋条多点对压成形失稳及断裂研究 [J]. 航空制造技术, 2018, 61(18): 16-22.LIU Chunguo,YUE Tao,CUI Qi. Study on instability and fracture of aluminum alloy stiffener panels under multi-point press bending [J]. Aerospace Manufacturing Technology, 2018,61(18): 16-22.
    [8]邹方利, 黄尚宇, 雷雨, 周梦成, 周曦, 颜士伟. 整体壁板的电磁局部加载成形[J]. 锻压技术, 2016, 41(08): 70-74.Zou Fangli, Huang Shangyu, Lei Yu, Zhou Mengcheng, Zhou Xi, Yan Shiwei. Local-loading electromagnetic forming of integral panel [J]. Forging & Stamping Technology, 2016, 41(08): 70-74.
    [9]Dong-Hwan Park, Hyuk-Hong Kwon. Development of warm forming parts for automotive body dash panel using AZ31b magnesium alloy sheets[J]. International Journal of Precision Engineering And Manufacturing, 2015, 16(10): 2159-2165.
    [11]李鱼鱼, 韩廷状, 楚志兵等. 应变路径变化对AZ31镁合金力学行为的影响(英文)[J]. 稀有金属材料与工程, 2022, 51(08): 2785-2793.Li Yuyu, Han Tingzhuang, Chu Zhibing, et al. Effect of strain path on mechanical behavior of AZ31 magnesium alloy [J]. Rare Metal Materials and Engineering, 2022, 51(08): 2785-2793.
    [12]周晨, 林金保, 何文慧等. 基于VPSC仿真的ZK60镁合金拉伸变形行为(英文)[J].稀有金属材料与工程, 2022, 51(07):2429-2435.Zhou Chen, Lin Jinbao, He Wenhui, et al. Tensile deformation simulation of extruded ZK60 alloy by VPSC model [J]. Rare Metal Materials and Engineering, 2022, 51(07): 2429-2435.
    [13]苏辉, 楚志兵, 薛春等. 挤压态AZ31镁合金的拉压不对称性及微观组织(英文)[J]. 稀有金属材料与工程, 2021, 50(10): 3446-3453.Su Hui, Chu Zhibing, Xue Chun, et al. Tension-compression asymmetry and microstructure of extruded AZ31 magnesium alloy [J]. Rare Metal Materials and Engineering, 2021, 50(10): 3446-3453.
    [14]李振亮, 田董扩. 不同状态条件下AZ80镁合金微观组织演化[J]. 稀有金属材料与工程, 2021, 50(02): 639-647.Li Zhenliang, Tian Dongkuo. Microstructure evolution of AZ80 magnesium alloy under different states [J]. Rare Metal Materials and Engineering, 2021, 50(02): 639-647.
    [15]杨博文, 马川川, 薛春等. 初始织构对AZ31镁合金孪生和织构演化的影响(英文)[J]. 稀有金属材料与工程, 2023, 52(01): 125-132.Yang Bowen, Ma Chuanchuan, Xue Chun, et al. Effect of initial texture on twinning and texture evolution of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(01): 125-132.
    [16]杨泽明, 王斌, 陈文. 飞机蒙皮零件数控精确拉形技术应用研究 [J]. 塑性工程学报, 2019, 26 (2): 138-144.YANG Zeming, WANG Bin, CHEN Wen. Research on application of precision CNC stretch forming on aircraft skin components [J]. Journal of Plasticity Engineering, 2019, 26(2): 138-144.
    [17]吕常伟, 罗大兵, 杨杰等. 飞机蒙皮拉形机模具快速更换系统设计 [J]. 锻压技术, 2019, 44(11): 140-145.Lyu Changwei, Luo Dabing, Yang Jie, Men Xiangnan, Zeng Yipan. Design on rapid die replacement system for aircraft skin stretch forming machine [J]. Forging & Stamping Technology, 2019, 44(11): 140-145.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[WANG Zhong-tang, LIU Quan, LIANG Hai-cheng, LI Yan-juan, LIU Yong-zhe. Numerical simulation and experimental study on progressive bending of magnesium alloy grid panel with variable curvature[J]. Rare Metal Materials and Engineering,2024,53(11):3217~3223.]
DOI:10.12442/j. issn.1002-185X.20230586

Copy
Article Metrics
  • Abstract:59
  • PDF: 179
  • HTML: 0
  • Cited by: 0
History
  • Received:September 16,2023
  • Revised:December 26,2023
  • Adopted:January 05,2024
  • Online: November 20,2024
  • Published: November 08,2024