Abstract:With the further improvement of material fatigue life extension and processing of parts with complex shapes, laser shock processing has encountered more and more obstacles in practical applications and it is particularly urgent to improve and optimize the specific processing methods in laser shock treatments. Using the stress effect produced by pulsed lasers to process materials in various fields still has broad prospects. Given the specific needs of laser shock in different industrial applications, several processing improvement methods which get rid of the equipment dependence on high-performance laser units were proposed. The non-laser parameters referred to include adjustable indicators such as the absorption layer, constraint layer, and defocusing state between laser and material. The selected material, thickness, and other related attributes of the absorption layer and the constraint layer directly affect the intensity of laser-induced shock waves, while changes in defocusing amount lead to differences in physical or chemical effects on the material surface. The process setting range for the above non-laser indicators is wide and easy to control, and reflects good adaptability of irregular components. The development of new technologies for equal (unequal)-strength and high-strength surface strengthening based on changes in these indicators, as well as new green packaging technologies such as laser marking, are introduced in detail. The new ideas behind these new methods are expected to inspire researchers to further explore the application potential of green lasers.