Abstract:As-forged WSTi6421 titanium alloy billet after β annealing was investigated. Abnormally coarse grains larger than adjacent grains could be observed in the microstructures, forming abnormal grain structures with uneven size distribution. Through electron backscattered diffraction (EBSD), the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed, revealing that the strength of the β phase cubic texture generated by forging significantly influences the grain size after β annealing. Heat treatment experiments were conducted within the temperature range from Tβ-50 °C to Tβ+10 °C to observe the macro- and micro-morphologies. Results show that the cubic texture of β phase caused by forging impacts the texture of the secondary α phase, which subsequently influences the β phase formed during the post-β annealing process. Moreover, the pinning effect of the residual primary α phase plays a crucial role in the growth of β grains during the β annealing process. EBSD analysis results suggest that the strength of β phase with cubic texture formed during forging process impacts the orientation distribution differences of β grains after β annealing. Additionally, the development of grains with large orientations within the cubic texture shows a certain degree of selectivity during β annealing, which is affected by various factors, including the pinning effect of the primary α phase, the strength of the matrix cubic texture, and the orientation relationship between β grain and matrix. Comprehensively, the stronger the texture in a certain region, the less likely the large misoriented grains suffering secondary growth, thereby aggregating the difference in microstructure and grain orientation distribution across different regions after β annealing.