+Advanced Search
Quantitative Strengthening Evaluation of Mg-Zn-Y Alloys Containing Icosahedral Quasi-Crystalline Phase
Author:
Affiliation:

1.College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;2.College of Aeronautics, Inner Mongolia University of Technology, Hohhot 010051, China

Fund Project:

National Natural Science Foundation of China (12072166); Inner Mongolia Autonomous Region Science and Technology Plan Project (2021GG0254); Supported by Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education (2023KFZD02); Inner Mongolia Autonomous Region Applied Mathematics Center Independent Research Key Project (ZZYJZD2022002); Inner Mongolia Autonomous Region Universities Basic Scientific Business Fee Research Project (JY20220075)

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [14]
  • | | |
  • Comments
    Abstract:

    Mg-4.8Zn-0.8Y, Mg-18Zn-3Y, Mg-15Zn-5Y, Mg-30Zn-5Y and Mg-42Zn-7Y (wt%) alloys containing icosahedral quasi-crystalline phases were prepared using the ordinary solidification method. The impact of Mg matrix porosity on the tensile strength and hardness of the alloys was studied. The porosity of the Mg matrix was quantitatively assessed using scanning electron microscope and Image-Pro Plus 6.0 software. Tensile tests were conducted at room temperature. Results show that the maximum tensile strength of the alloy is 175.56 MPa, with a corresponding Mg matrix porosity of 76.74%. Through fitting analysis, it is determined that the maximum tensile strength is achieved when the porosity of the Mg matrix is 64.87%. The microhardness test results indicate a gradual decrease in alloy hardness with increasing the porosity of Mg matrix. This study provides an effective quantitative analysis method for enhancing the mechanical properties of magnesium alloys.

    Reference
    [1] Kong T, Kwak B J, Kim J et al. Journal of Magnesium and Alloys[J], 2020, 8(1): 163
    [2] Panchal M, Ravi K R, Kaushik L et al. Metals and Materials International[J], 2023, 29: 3471
    [3] Hyun J K, Young M K, Jun H B et al. Metals and Materials International[J], 2023, 29: 381
    [4] Mirzadeh H. Journal of Materials Research and Technology[J], 2023, 25: 7050
    [5] Wang X J, Xu D K, Wu R Z et al. Journal of Materials Science & Technology[J], 2018, 34(2): 245
    [6] Zhang L, Zhou W, Hu P H et al. Journal of Alloys and Compounds[J], 2016, 688: 868
    [7] Medina J, Pérez P, Garces G et al. Materials Characteriza-tion[J], 2016, 118: 186
    [8] Zhang Z Q, Liu X, Wang Z K et al. Materials & Design[J], 2015, 88: 915
    [9] Liu J F, Yang Z Q, Ye H Q. Journal of Alloys and Compounds[J], 2015, 621: 179
    [10] Müller A, Garcés G, Pérez P et al. Journal of Alloys and Compounds[J], 2007, 443(1–2): L1
    [11] Kwak T Y, Kim W J. Journal of Materials Science & Technol-ogy[J], 2019, 35(1): 181
    [12] Kim J K, Sandlobes S, Raabe D. Acta Materialia[J], 2015, 82: 414
    [13] Chaman-Ara M, Ebrahimi G R, Ezatpour H R. Transactions of Nonferrous Metals Society of China[J], 2018, 28(4): 629
    [14] Yang K, Zhang J S, Zong X M et al. Materials Science and Engineering A[J], 2016, 669: 340
    [15] Wang J, Zhang J S, Zong X M et al. Materials Science and Engineering A[J], 2015, 648: 37
    [16] Lee J Y, Lim H K, Kim D H et al. Materials Science and Engineering A[J], 2007, 449–451: 987
    [17] Zhang L, Liu Z, Mao P L. International Journal of Minerals Metallurgy and Materials[J], 2014, 21(8): 779
    [18] Nie K B, Kang X K, Deng K K et al. Journal of Materials Research[J], 2018, 33: 2806
    [19] Yang J Y, Kim W J. Journal of Materials Research and Technology[J], 2019, 8(2): 2316
    [20] Sun C, Liu H, Wang C et al. Journal of Materials Research and Technology[J], 2020, 9(6): 14865
    [21] Wan D Q, Luo X, Liu Y J et al. Rare Metals[J], 2015, 34(7):452
    [22] Wang J F, Song P F, Gao S et al. Journal of Materials Sci-ence[J], 2012, 47: 2005
    [23] Daniel K, Peter G, Zuzana G et al. Applied Sciences[J], 2023,13(2): 1045
    [24] Sun K X, Zeng Y, Yin D D et al. Materials Science & Engineering A[J], 2020, 792: 139801
    [25] Lee J Y, Kim D H, Lim H K et al. Materials Letters[J], 2005,59(29–30): 3801
    [26] Singh A, Tsai A P. Scripta Materialia[J], 2005, 53(9): 1083
    [27] Dang C, Wang J F, Wang J X et al. Journal of Materials Research and Technology[J], 2023, 22: 2589
    [28] Xu D K, Tang W N, Liu L et al. Journal of Alloys and Compounds[J], 2008, 461(1–2): 248
    [29] Zheng K Y, Dong J, Zeng X Q et al. Materials Characteriza- tion[J], 2008, 59(7): 857
    [30] Wang S D, Xu D K, Wang B J et al. Scientific Reports[J], 2016, 6: 29471
    [31] Singh A, Watanabe M, Kato A et al. Science and Technology of Advanced Materials[J], 2005, 6: 895
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Wang Yingnan, Meng Xiaokai, Guo Junhong. Quantitative Strengthening Evaluation of Mg-Zn-Y Alloys Containing Icosahedral Quasi-Crystalline Phase[J]. Rare Metal Materials and Engineering,2025,54(3):612~617.]
DOI:10.12442/j. issn.1002-185X.20240183

Copy
Article Metrics
  • Abstract:13
  • PDF: 27
  • HTML: 17
  • Cited by: 0
History
  • Received:March 27,2024
  • Revised:May 08,2024
  • Adopted:May 09,2024
  • Online: March 25,2025
  • Published: March 25,2025