+Advanced Search
Coarsening Behavior of γ′ Precipitates and Compression Performance of Novel Co-Ni-Al-W Superalloy
Author:
Affiliation:

1.Shenyang Research Institute of Foundry Co., Ltd, China Academy of Machinery, Shenyang 110022, China;2.National Key Laboratory of Advanced Casting Technologies, Shenyang 110022, China

Fund Project:

Natural Science Foundation of Liaoning Province (2023-MSLH-337)

  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The coarsening behavior of γ? precipitate phase at different temperatures and the compressive performance of novel Co-Ni-Al-W superalloy were investigated. Experiment results show that the evolution of the mean radius and volume fraction of the γ? phase obeys the classical Lifshitz-Slyozov-Wagner model. The coarsening rate of the γ? phase exhibits a significant dependence on the aging temperature, which increases from 1.30×10-27 m3/s at 800 °C to 9.56×10-27 m3/s at 900 °C. The activation energy of γ? phase is mainly influenced by the W diffusion in the γ matrix, presenting as 210 kJ/mol. The prepared Co-Ni-Al-W alloy possesses superb comprehensive properties, particularly the good combination of high γ? solvus temperature (1221 °C) and low density (8.7 g/cm3). Besides, the compressive yield strength of the Co-Ni-Al-W alloy at ambient and high temperatures are higher than that of other γ?-strengthened Co-based superalloys. The compressive yield strength of the Co-Ni-Al-W alloy at 850 °C is as high as 774 MPa.

    Reference
    [1] Feng Qiang, Lu Song, Li Wendao et al. Acta Metallurgica Sin- ica[J], 2023, 59(9): 1125 (in Chinese)
    [2] Sato J, Omori T, Oikawa I et al. Science[J], 2006, 312(5770): 90
    [3] Ooshima M, Tanaka K, Okamoto N L et al. Journal of Alloys and Compounds[J], 2010, 508(1):71
    [4] Bauer A, Neumeier S, Pyczak F et al. Scripta Materialia[J], 2010, 63(12): 1197
    [5] Kobayashi S, Tsukamoto Y, Takasugi T. Intermetallics[J], 2012, 31: 94
    [6] Xu Yangtao, Xia Rongli, Sha Qizhen et al. Rare Metal Materials and Engineering[J], 2017, 46(9): 2459 (in Chinese)
    [7] Zhao Y S, Zhang Y H, Zhang Y et al. Progress in Natural Science: Materials International[J], 2021, 31(5): 641
    [8] Li Y Z, Florian P, Michael O et al. Journal of Alloys and Compounds[J], 2017, 729: 266
    [9] Xu Yangtao, Xia Rongli, Lou Dechao. Rare Metal Materials and Engineering[J], 2017, 46(8): 2288 (in Chinese)
    [10] Omori T, Oikawa K, Sato J et al. Intermetallics[J], 2013, 32(1): 74
    [11] Shinagawa K, Omori T, Sato J et al. Materials Transactions[J], 2008, 49(6): 1474
    [12] Ges A M, Fornaro O, Palacio H A. Materials Science and Engineering A[J], 2007, 458(1): 96
    [13] Tiley J, Viswanathan G B, Srinivasan R et al. Acta Materialia[J], 2009, 57(8): 2538
    [14] Vorontsov V A, Barnard J S, Rahman K M et al. Acta Mate- rialia[J], 2016, 120(11): 14
    [15] Sauza D J, Bocchini P J, Dunand D C et al. Acta Materialia[J], 2016, 117(9): 135
    [16] Aliakbari-Sani S, Vafaeenezhad H, Arabi H et al. Journal of Materials Research and Technology[J], 2022, 21: 3425
    [17] Xu L, Tian C G, Cui C Y et al. Materials Science and Techno-logy[J], 2014, 30(8): 962
    [18] Liu Zhaofeng, Cheng Junyi, Ma Xiangdong et al. Rare Metal Materials and Engineering[J], 2024, 53(3): 768 (in Chinese)
    [19] Guan Y, Liu Y C, Ma Z Q et al. Vacuum[J], 2020, 175: 109247
    [20] Lifshitz I M, Slyozov V V. Journal of Physics and Chemistry of Solids[J], 1961, 19(1): 35
    [21] James C, Hector B, David D. Acta Materialia[J], 2010, 58(11): 4019
    [22] Zhao Guangdi, Zang Ximin, Zhao Zhuo. Rare Metal Materials and Engineering[J], 2020, 49(11): 3809 (in Chinese)
    [23] Alan J A, Vidvuds O. Nature Materials[J], 2005, 4(4): 309
    [24] Long Anping, Xiong Jiangying, Zhang Gaoxiang et al. Rare Metal Materials and Engineering[J], 2024, 53(4): 1042 (in Chinese)
    [25] Qu S S, Li Y J, Wang C P et al. Materials Science and Engineering A[J], 2020, 787: 139455
    [26] Meher S, Nag S, Tiley J et al. Acta Materialia[J], 2013, 61(11): 4266
    [27] Daniel J S, David C D, Ronald D N et al. Acta Materialia[J], 2019, 164: 654
    [28] Ravi R, Paul A. Intermetallics[J], 2011, 19(3): 426
    [29] Gao Z T, Ren H B, Geng H M et al. Journal of Materials Engineering and Performance[J], 2022, 31(11): 9534
    [30] Gao Z T, Li J Z, Ke L C et al. Journal of Alloys and Com- pounds[J], 2023, 966: 171560
    [31] Suzuki A, DeNolf G C, Pollock T M. Scripta Materialia[J], 2007, 56(5): 385
    [32] Qu S S, Li Y J, He M L et al. Materials Science and Engineering A[J], 2019, 761: 138034
    [33] Reyes F L, Taylor S, Dunand D C. Acta Materialia[J], 2019, 172: 44
    [34] Nithin B, Samanta A, Makineni S K et al. Journal of Materials Science[J], 2017, 52(18): 11036
    [35] Christopher H Z, Povstugar I, Li R et al. Acta Materialia[J], 2017, 135: 244
    [36] Pandey P, Makineni S K, Samanta A et al. Acta Materialia[J], 2019, 163: 140
    [37] Makineni S K, Samanta A, Rojhirunsakool T et al. Acta Materialia[J] 2015, 97(9): 29
    [38] Ruan J J, Liu X J, Yang S Y et al. Intermetallics[J], 2018, 92(1): 126
    [39] Suzuki A, Pollock T M. Acta Materialia[J], 2008, 56(6): 1288
    [40] Caillard D, Molénat G, Paidar V. Materials Science and Engineering A[J], 1997, 234(8): 695
    [41] Wee D M, Noguchi O, Oya, Y et al. Transactions of the Japan Institute of Metals[J], 1980, 21(4): 237
    [42] Paidar V, Pope D P, Vitek V. Acta Materialia[J], 1984, 32(3): 435
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Zhou Cheng, Jin Lei, Jing Gaoyang, Yu Boyan, Zhao Jun. Coarsening Behavior of γ′ Precipitates and Compression Performance of Novel Co-Ni-Al-W Superalloy[J]. Rare Metal Materials and Engineering,2024,53(10):2786~2793.]
DOI:10.12442/j. issn.1002-185X.20240244

Copy
Article Metrics
  • Abstract:176
  • PDF: 274
  • HTML: 44
  • Cited by: 0
History
  • Received:April 25,2024
  • Revised:June 05,2024
  • Adopted:June 07,2024
  • Online: September 27,2024
  • Published: September 27,2024