+Advanced Search
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • | |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700-950 °C and 0.001-1 s-1. The temperature rise under different deformation conditions was calculated, and the curve was corrected. The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established. The microstructure evolution under different conditions was analyzed, and the dynamic recrystallization (DRX) mechanism was revealed. The results show that the flow stress decreases with the increase of strain rate and the decrease of deformation temperature. The deformation temperature rise gradually increases with the increase of strain rate and the decrease of deformation temperature. At 700 °C/1 s-1, the temperature rise reaches 100 °C. The corrected curve value is higher than the measured value, and the strain compensation constitutive model has high prediction accuracy. The precipitation of the α phase occurs during deformation in the two-phase region, which promotes the DRX process of the β phase. At low strain rate, the volume fraction of dynamic recrystallization increases with the increase of deformation temperature. The DRX mechanism includes continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX).

    Reference
    1 Li Tong, Kent Damon, Sha Gang et al. Acta Materialia[J], 2016, 106: 353-366
    2 Wu Chuan, Zhou Yu jie, Liu Bin. Materials Science and En-gineering: A[J], 2022, 838: 142745
    3 Zhang S H, Xu Y, Shang Y L et al. Journal of Materials Science & Technology[J], 2001, 17(1): 113-114
    4 Ding Wanwu, Chen Shihao, Hu Liwen et al. Rare Metal Mate-rials and Engineering[J], 2023, 52(12): 4086-4098
    5 Feng Yinghao, Sun Chaoyang, Xu Sinuo et al. Rare Metal Materials and Engineering[J], 2023, 52(4): 1227-1237
    6 Wang Xingmao, Ding Yutian, Bi Zhongnan et al. Rare Metal Materials and Engineering[J], 2023, 52(02): 517-526
    7 Cai Zhen, Wu Tiandong, Wei Na et al. Rare Metal Materials and Engineering[J], 2022, 51(11): 4051-4058
    8 Shi S X, Ge J Y, Lin Y C et al. Materials Science and Engineering: A[J], 2022, 847: 143335
    9 Sun J Z, Li M Q, Li H. Materials Science and Engineering: A[J], 2017, 697: 132-140
    10 Ding Xiaofeng, Zhao Fuqiang, Shuang Yuanhua et al. Journal of Materials Processing Technology[J], 2020, 276: 116325
    11 Wu C, Huang L, Li C M. Materials Science and Engineering: A[J], 2020, 773: 138851
    12 Zhao Mingjie, Huang Liang, Li Changmin et al. Materials Science and Engineering: A[J], 2021, 810: 141031
    13 Guo Shiqi, Huang Liang, Li Changmin et al. The International Journal of Advanced Manufacturing Technology[J], 2024, 131(7): 4233-4252
    14 Li Changmin, Huang Liang, Zhao Mingjie et al. Journal of Alloys and Compounds[J], 2022, 924: 166481
    15 Li C M, Huang L, Zhao M J et al. Materials Science and En-gineering: A[J], 2021, 814: 141231
    16 Long S., Xia Y. F., Wang P. et al. Journal of Alloys and Com-pounds[J], 2019, 796: 65-76
    17 Gao Pengfei, Fu Mingwang, Zhan Mei et al. Journal of Mate-rials Science & Technology[J], 2020, 39: 56-73
    18 Li Changmin, Huang Liang, Li Chenglin et al. Rare Metals[J], 2022, 41(5): 1434-1455
    19 Jia Zhi, Yu Lidan, Wei Baolin et al. Rare Metal Materials and Engineering[J], 2022, 51(2): 461-468
    20 Xu J W, Zeng W D, Zhou D D et al. Journal of Alloys and Compounds[J], 2018, 767: 285-292
    21 Liu Anjin, Wang Lin, Cheng Xingwang et al. Rare Metal Ma-terials and Engineering[J], 2021, 50(12): 4201-4208
    22 Wen DongXu, Yue TianYu, Xiong YiBo et al. Materials Science and Engineering: A[J], 2020: 140491
    23 Wang Yitao, Li Jianbo, Xin Yunchang et al. Materials Science and Engineering: A[J], 2019, 768: 138483
    24 Dong Entao, Yu Wei, Cai Qingwu et al. Materials Science and Engineering: A[J], 2019, 764: 138228
    25 Matsumoto Hiroaki, Kitamura Masami, Li Y P et al. Materials Science and Engineering: A[J], 2014, 611: 337-344
    26 Lin Y C, Huang J, He D G et al. Journal of Alloys and Com-pounds[J], 2019, 795: 471-482
    27 Li C M, Huang L, Zhao M J et al. Materials Science and En-gineering: A[J], 2022, 850: 143571
    28 Wang M J, Sun C Y, Fu M W et al. Journal of Alloys and Compounds[J], 2020, 820: 153325
    29 Zhao Q Y, Yang F, Torrens R et al. Materials Characterization[J], 2019, 149: 226-238
    30 Zhao Juan, Zhong Jie, Yan Fei et al. Journal of Alloys and Compounds[J], 2017, 710: 616-627
    31 Zhong Liwei, Gao Wenli, Feng Zhaohui et al. Journal of Ma-terials Science & Technology[J], 2019, 35(10): 2409-2421
    32 Zang Qianhao, Yu Huashun, Lee Yun-Soo et al. Materials Characterization[J], 2019, 151: 404-413
    33 Zang Qianhao, Yu Huashun, Lee Yun-Soo et al. Journal of Alloys and Compounds[J], 2018, 763: 25-33
    Related
    Cited by
    您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Li changmin, Luo hengjun, Zhao ning, Guo shiqi, Wei minggang, Xiang wei, Cui mingliang, Xie jing, Huang liang. Constitutive model and microstructure evolution of as-extruded Ti-6554 alloy based on temperature rise correction[J]. Rare Metal Materials and Engineering,,().]
DOI:10.12442/j. issn.1002-185X.20240451

Copy
Article Metrics
  • Abstract:29
  • PDF: 152
  • HTML: 0
  • Cited by: 0
History
  • Received:July 24,2024
  • Revised:September 04,2024
  • Adopted:September 09,2024
  • Online: November 21,2024