Abstract:The bending springback of magnesium alloys is difficult to predict accurately in numerical simulations because of its anisotropic characteristics. The springback of magnesium alloys in v-shaped roll bending was analyzed more accurately using the error optimization function in Matlab to optimize the anisotropic potential values required for the Hill’48 yield criterion in ABAQUS. The optimized Hill’48 yield criterion model was used to numerically simulate the springback of magnesium alloy v-shaped roll bending. The simulation results were compared with the experimental results. The error between the springback change ratio obtained using the optimized Hill’48 yield criterion and experimentally formed parts was within 2%. Overall, the optimized Hill’48 yield criterion model can improve the springback prediction accuracy of magnesium alloy v-shaped roll forming.