+Advanced Search
Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study
Author:
Affiliation:

1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;2.School of Energy Engineering, Huanghuai University, Zhumadian 463000, China;3.Network Information Center, Xi'an Jiaotong Uni-versity, Xi 'an 710049, China;4.State Key Laboratory for Mechanical Behavior of Materials, Xi 'an Jiaotong University, Xi 'an 710049, China

Fund Project:

Supported by Ministry of Science and Technology of China (2017YFA0700701, 2017YFA0700703); National Natural Science Foundation of China (52061025, 51701189); Sponsored by State Key Laboratory for Mechanical Behavior of Materials (20192104); Joint Fund of Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (18LHPY001)

  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [15]
  • | | |
  • Comments
    Abstract:

    The molecular dynamics simulations were used to study the effect of grain size and twin density on the plastic deformation of nano-polycrystalline aluminum alloy. The results show that the dislocation density after relaxation is crucial to the microstructure evolution and the inverse Hall-Petch relation of the nano-polycrystalline Al. The staggered tetrahedrons and complex staggered structures are formed in the fine grains, which is attributed to the restriction of grain size. Thus, the auxiliary deformation of grain boundary is activated. The Shockley partial dislocations nucleate and multiply at the grain boundaries when the twin boundary spacing (TBS) is relatively large. However, with decreasing the TBS, the twin boundary becomes the source of the Shockley partial dislocations. A large number of partial dislocation nucleations at the twin boundary will cause the twin boundary to migrate or even disappear. The deformed nano-twins can also be observed during the plastic deformation process. This research provides theoretical basis for the development of advanced nano-polycrystalline Al alloy with adjustable mechanical properties.

    Reference
    [1] Kumar K S, Swygenhoven H V, Suresh S. Acta Materialia[J], 2003, 51(19): 5743
    [2] Schi?tz J, Di Tolla F D, Jacobsen K W. Nature[J], 1998, 391(6667): 561
    [3] Zhang Y F, Luo X B, Li C et al. Rare Metal Materials and Engineering[J], 2020, 49(12): 4097
    [4] Zhang Xingli, Sun Zhaowei, Kong Xianren et al. Rare Metal Materials and Engineering[J], 2010, 39(5): 853 (in Chinese)
    [5] Hall E O. Proceedings of the Physical Society: Section B[J], 1951, 64(9): 742
    [6] Bulatov V, Abraham F F, Kubin L et al. Nature[J], 1998, 391(6668): 669
    [7] Jeong G, Park J, Nam S et al. Archives of Metallurgy and Materials[J], 2015, 60(2B): 1287
    [8] Choi H J, Lee S W, Park J S et al. Materials Transactions[J], 2009, 50(3): 640
    [9] Birringer R, Gleiter H, Klein H P et al. Physics Letters A[J], 1984, 102(8): 365
    [10] Karch J, Birringer R, Gleiter H. Nature[J], 1987, 330(6148): 556
    [11] Nastasi M, Parkin D M, Gleiter H. Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures[M]. Berlin: Springer Science & Business Media, 1993
    [12] Siegel R W. Materials Science Forum[J], 1997, 235-238: 851
    [13] Cavaliere P. Handbook of Mechanical Nanostructuring[M]. New York: John Wiley & Sons, 2015
    [14] Kumar K S, Suresh S, Chisholm M F et al. Acta Materialia[J], 2003, 51(2): 387
    [15] Ovid'ko I A, Sheinerman A G. Acta Materialia[J], 2009, 57(7): 2217
    [16] Ke M, Hackney S A, Milligan W W et al. Nanostructured Materials[J], 1995, 5(6): 689
    [17] Jin M, Minor A M, Stach E A et al. Acta Materialia[J], 2004, 52(18): 5381
    [18] Shan Z W, Stach E A, Jmk W et al. Science[J], 2004, 305(5684): 654
    [19] Gutkin M Y, Ovid'ko I A, Skiba N V. Acta Materialia[J], 2003, 51(14): 4059
    [20] Farkas D, Mohanty S, Monk J. Materials Science and Engineering A[J], 2008, 493(1-2): 33
    [21] Lu L, Shen Y F, Chen X H et al. Science[J], 2004, 304(5669): 422
    [22] Luo Dechun, Rui Zhiyuan, Fu Rong et al. Rare Metal Materials and Engineering[J], 2017, 46(12): 3792 (in Chinese)
    [23] Zhang Xiaoyong, Zhang Bin, Li Chao et al. Rare Metal Materials and Engineering[J], 2013, 42(10): 2057 (in Chinese)
    [24] Chen M W, Ma E, Hemker K J et al. Science[J], 2003, 300(5623): 1275
    [25] Yamakov V, Wolf D, Phillpot S R et al. Nature Materials[J], 2004, 3(1): 43
    [26] Zhu Y T, Langdon T G. Materials Science and Engineering A[J], 2005, 409(1-2): 234
    [27] Kadau K, Lomdahl P S, Holian B L et al. Metallurgical and Materials Transactions A[J], 2004, 35(9): 2719
    [28] Gianola D S, Petegem S V, Legros M et al. Acta Materialia[J], 2006, 54(8): 2253
    [29] Xu W W, Dávila L P. Materials Science and Engineering A[J], 2017, 692: 90
    [30] Honeycutt J D, Andersen H C. Journal of Physical Chemistry[J], 1987, 91(19): 4950
    [31] Plimpton S J. Journal of Computational Physics[J], 1995, 117(1): 1
    [32] Hirel P. Computer Physics Communications[J], 2015, 197: 212
    [33] Voronoi G. Journal Für Die Reine Und Angewand Mathematik[J], 1908, 1908(133): 97
    [34] Stukowski A. Modelling and Simulation in Materials Science and Engineering[J], 2010, 18(1): 15 012
    [35] Li J. Modelling and Simulation in Materials Science and Engineering[J], 2003, 11(2): 173
    [36] Nosé S. The Journal of Chemical Physics[J], 1984, 81(1): 511
    [37] Hoover W G. Physical Review A[J], 1985, 31(3): 1695
    [38] Zope R R, Mishin Y. Physical Review B[J], 2003, 68(2): 24 102
    [39] Hall E O. Proceedings of the Physical Society Section: Section B[J], 1951, 643(9): 747
    [40] Petch N J. Acta Metallurgica[J], 1986, 34(7): 1387
    [41] Lu K, Sui M L. Scripta Metall Mater[J], 1993, 28(12): 1465
    [42] Blum W, Li Y J, Chen J et al. International Journal of Materials Research[J], 2006; 97(12): 1661
    [43] Agena A S M. Journal of Materials Processing Technology[J], 2009, 209(2): 856
    [44] Swygenhoven H V, Derlet P M, Hasnaoui A. Physical Review B[J], 2002, 66(2): 24 101
    [45] Yamakov V, Wolf D, Phillpot S R et al. Acta Materialia[J], 2002, 50(20): 5005
    [46] Hull D, Bacon D J. Introduction to Dislocations[M]. Amsterdam: Elsevier, 2011
    [47] Lu K. Nature Reviews Materials[J], 2016, 1(5): 16 019
    [48] Priester L. Grain Boundaries and Crystalline Plasticity[M]. Noboken: John Wiley & Sons, 2013
    [49] Ding J, Tian Y, Wang L S et al. Computational Materials Science[J], 2019, 158: 76
    [50] Song H Y, Li Y L. Physics Letters A[J], 2012, 376(4): 529
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Ren Junqiang, Yang Dan, Wang Qi, Lu Xuefeng, Zhang Xudong, Xue Hongtao, Tang Fuling, Ding Yutian. Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study[J]. Rare Metal Materials and Engineering,2022,51(7):2436~2445.]
DOI:10.12442/j. issn.1002-185X. E20210014

Copy
Article Metrics
  • Abstract:591
  • PDF: 1261
  • HTML: 227
  • Cited by: 0
History
  • Received:May 18,2021
  • Revised:July 30,2021
  • Adopted:August 05,2021
  • Online: August 03,2022
  • Published: July 27,2022