Abstract:A water based conductive ink was fabricated with HPMC as binder, FSO-100 as surfactant and silver nanowire (AgNW) as conductor and the transparent conductive film was fabricated on PET substrates by Mayer rod coating process. The effects of the concentration of HPMC, FSO-100 and AgNW on the opto-electrical properties of transparent conductive film were investigated. The results show that the addition of FSO-100 can significantly enhance the wettability between conductive ink and PET substrate, but excess FSO-100 results in the increase of sheet resistance. The introduction of HPMC reduces the aggregation of AgNWs and high concentration of HPMC decreases the conductivity. The high concentration of AgNWs decreases the sheet resistance and transmittance. With 2.6 mg/mL AgNW, the transparent conductive film researches a sheet resistance of 12 Ω/sq and transmittance of 94.02% at 550 nm, showing a figure of merit of (FOM) of 448.63, and a root-mean-square surface roughness of 7.28 nm, and the opto-electrical properties maintain after 1000 times of bending, providing great potential for the application in wearable devices and flexible organic light-emitting diodes.