Abstract:The microstructure, tensile and fatigue properties of Ti-6Al-4V alloy made by EBSM were studied. The as-build material exhibited a columnar microstructure in which the prior-β grains grew along the build direction. Within each β grain, Widmanst?tten microstructure is dominant, and colonies of α/b platelets were also present.The tensile strength of as-build material was not affected by defects and the average tensile strength and ductility meet the ASTM standard. HIPpingremoved all defects in the EBSMTi-6Al-4V alloyand increased tensile elongation by ~35%, but the strength was 5% lower due to microstructure coarsening. The fatigue life was also significantly improved by HIPping and the fatigue limit reached 600MPa under 1×107 cycle, R=0.1 condition. The large scatter of fatigue life is mailyattributed to the scatter of tensile properties. In most of the samples, crack initiated from the surface. The crack initiation mechanism was proposed base on fracture analysis of typical fatigue specimens.