Abstract:TC16 titanium alloys with different hydrogen quantity were obtained using a hydrogenating treatment. Effects of the hydrogen quantity on phase transformation temperatures of TC16 titanium alloys were investigated by a continuous heating method. Microstructures of hydrogenated TC16 titanium alloys were studied using OM, deformation behaviours of TC16 titanium alloys were studied using quasi-static compression tests, and the alloy deformation behaviours at high strain rates were investigated using magnetic cold heading. The results have shown that, phase transformation temperature of TC16 titanium alloy decreases with the increasing of hydrogen quantity, when this amount reaches 0.3wt. %, the phase temperature decreases around 150 °C; Microstructures of hydrogenated TC16 titanium alloy changes as well, martensite phase generates for low hydrogen quantity, while equal-axial β phase for high hydrogen quantity; Strain rate sensitivity of hydrogenated TC16 titanium alloy increases, with the increasing of deformation rate, the formability is improved, the limit compression deformation is greater than 86% at a high strain rate. Using cold up-setting tests to manufacture layer board nuts with perfect surfaces, the deformation behaviour was validated.