2013, 42(9):1790-1794.
Abstract:
The hydriding properties of Zr9Ni11 alloy at different temperatures (25~150 °C) and various initial hydrogen pressures (10~160 kPa) were investigated. The results show that with the increase of temperature, the equilibrium pressure of the Zr9Ni11 alloy increases significantly, but its hydrogen absorption quantity decreases dramatically. When the temperature is less than 75 °C, the hydriding reaction rate of Zr9Ni11 alloy increases with increasing of temperature; while the temperature is higher than 75 °C, the hydriding reaction rate of the alloy decreases with increasing of temperature. The initial hydrogen pressure has a great influence on the kinetic properties of the alloy. When the initial pressure is lower than 50 kPa, the hydriding reaction rate of the alloy increases obviously with the increase of the initial hydrogen pressure, and even in the case of relatively low pressure, the alloy can still absorb hydrogen dramatically. The hydrogen absorption quantity and the equilibrium pressure of the alloy increase with the increase of the initial hydrogen pressure. The samples of the alloy before and after hydrogenation were analyzed by XRD, SEM(EDS) and TEM(SAED). After several hydriding-dehydriding cycles, the surface of the alloy which is homogeneous and smooth before hydrogenation becomes rough and crannied, and the ratio of Zr and Ni on the surface is varied. It is also found the amorphous states might be increased and mischcrystal formed through hydriding-dehydriding cycles. Zr9Ni11 alloy might be a promising candidate for extracting tritium according to our investigation.