2017, 46(4):1054-1060.
Abstract:
The metal bond diamond wheels adding 3wt% brittle Na2O-B2O3-SiO2-Al2O3-Li2O glass bond were fabricated by hot pressed sintering technique at different sintering temperature. Using the methods of scan-electroscope, energy spectrum analysis, X-diffraction analysis, XPS analysis, rockwell hardness test and three-point bending test, the effect of different sintering temperatures on the microstructure, interface structure,hardness and the bending strength of glass/metal composite bond were discussed. Meanwhile, the grinding performance of cylinder of the diamond wheels was also studied. The results showed that, at 850℃, a thin FeAl2O4 transition layer formed and enhanced the interfacial adhesion toughness between metal and ceramic phase, and the bending strength of composite bond reached the maximum value826MPa, and the hardness was HRB94. At 900℃, the brittle and thickening FeAl2O4 transition layer decreased the bending strength of composite bond. When the sintering temperature was 850℃, comparing with metal bond diamond wheel, the average value of the roundness and straightness tolerance of the cylinder grinded by the diamond wheel with 3wt% glass bond reduced from 3.1μm and 2.5μm to 2.7μm and 2.1μm.