C_f/SiC 复合材料 SiC/Yb₂SiO₅ 抗氧化复合涂层研究

温海明^{1,2}, 董绍明¹, 丁玉生¹, 张翔宇¹, 何平¹, 高乐¹

(1. 中国科学院上海硅酸盐研究所,上海 200050)(2. 中国科学院研究生院,北京 100049)

摘 要: 硅酸镱(Yb₂SiO₅)是 C_f/SiC 复合材料非常理想的抗氧化涂层材料。用脉冲 CVD 法在 C_f/SiC 复合材料上先制备 SiC 粘附层。用溶胶凝胶法制备粒径为 200~300 nm 的单相 Yb₂SiO₅ 粉体, 然后用 PCS-SiC-Yb₂SiO₅ 浆料浸涂法制备 SiC-Yb₂SiO₅ 过渡层,因 PCS 粘结强度大,且热解后能在原位生成 SiC,故能大大增加涂层的结合力。配备低粘度、高 固含量的 Yb₂SiO₅ 浆料,并用浆料浸涂烧结法制备致密、细晶粒的 Yb₂SiO₅ 涂层。1500 ℃静态空气中氧化实验表明: SiC/Yb₂SiO₅ 复合涂层具备优异的抗氧化性能。

关键词: C_f/SiC 复合材料; 抗氧化涂层; 硅酸镱; 浆料浸涂法

中图法分类号: TB332 文献标识码: A 文章编号: 1002-185X(2009)09-1580-04

C 纤维增强 SiC (C_f/SiC) 复合材料具有密度小、耐高温、高温力学性能优异、抗热冲击性能良好、耐烧蚀、抗冲刷、非脆性断裂等一系列优点,是非常优良的高温 结构材料,广泛应用于燃气涡轮发动机热结构部件(如 涡轮叶片、喷管、燃烧室内衬等)、航天飞行器热保护 体系和高温连接件等领域^[1]。在这些应用领域中,C_f/SiC 复合材料必须在高温氧化环境中工作。然而,C_f/SiC 复 合材料存在 C 纤维易氧化的问题,缺乏足够的抗氧化能 力。解决此问题最有效的方法是在复合材料表面添加抗 氧化涂层,阻止氧化气体与复合材料的接触。

SiC涂层是C_f/SiC复合材料最基本的抗氧化涂层, 其常用化学气相沉积法(CVD)制备。通常采用复合 涂层来实现对C_f/SiC复合材料的氧化防护,复合涂层 体系中基本以SiC涂层作为最内层,起粘附层和过渡 层的作用,而外涂层材料则各有不同。稀土硅酸盐具 备非常好的耐高温性能(熔点达2000℃),氧扩散率 低,与SiC的化学力学相容性好,所以是C_f/SiC复合 材料很理想的抗氧化涂层材料。文献中已有一些关于 硅酸钇(Y₂SiO₅)抗氧化涂层的报道^[2,3]。硅酸镱 (Yb₂SiO₅)相对于Y₂SiO₅,具有更低的热膨胀系数 (Yb₂SiO₅)的热膨胀系数为 $3.5\sim4.5\times10^{-6}$ °C⁻¹,Y₂SiO₅的为 $5\sim6\times10^{-6}$ °C⁻¹),并且高温晶相稳定,无同质异 构现象,因此是C_f/SiC复合材料非常理想的抗氧化涂 层材料^[4]。文献中已报道用等离子体喷涂法制备 Yb₂SiO₅涂层^[4],然而等离子喷涂设备昂贵,成本较高, 且能否实施受基材形状约束。

本研究采用浆料浸涂烧结法制备Yb₂SiO₅ 抗氧化 涂层,先用溶胶凝胶法制备亚微米级的Yb₂SiO₅粉体, 然后用浆料浸涂烧结法在已有CVDSiC涂层的C_f/SiC 复合材料上制备Yb₂SiO₅涂层,并对涂层的显微结构 和抗氧化性能进行研究。

1 实 验

实验原料为 Yb(NO₃)₃·nH₂O(n=6~7),正硅酸乙酯 (TEOS)和无水乙醇(C₂H₅OH)等,用溶胶凝胶法制 备 Yb₂SiO₅粉,具体工艺过程见文献[5]。将凝胶粉在 1200 ℃下煅烧1h后即得到单相 Yb₂SiO₅粉体,粉体 粒径为 200~300 nm,分散性好。

用压力辅助模压-前驱体浸渍裂解工艺制备 2D C_f/SiC 复合材料,所采用纤维增强体为二维纤维布, 聚合物前驱体为聚碳硅烷 (PCS),具体工艺过程见文 献[6]。所制得的 2D C_f/SiC 复合材料表观密度为~2.1 g/cm³,开孔率~5%。将所制得的复合材料切割并用砂 纸打磨抛光,得到尺寸为 3 mm×5 mm×40 mm 的小试 条,然后用无水乙醇超声清洗并烘干。

先在C_f/SiC复合材料上制备SiC涂层,作为粘附层。 SiC涂层用脉冲CVD法制备,SiC前驱体为三氯甲基硅 烷(MTS),载气和稀释气体为H₂,涂层沉积温度为1050 ℃,沉积压力为15 kPa,详细工艺过程见文献[7]。用SEM (JSM 6700F, JEOL)观察涂层的表面形貌。

收稿日期: 2008-10-11

基金项目:国家 863 项目(2006AA03Z565);国家自然科学基金(50472015)

作者简介: 温海明, 男, 1984 年生, 硕士生, 中国科学院上海硅酸盐研究所, 上海 200050, 电话: 021-52415207, E-mail: wenhaiming 1984@mail.sic.ac.cn; 通讯作者: 董绍明, 研究员, 博士生导师, 电话: 021-52414324, E-mail: smdong@mail.sic.ac.cn

首先配备PCS-SiC-Yb₂SiO₅浆料,将PCS、纳米碳化 硅粉(粒径约为50 nm)、Yb₂SiO₅粉和汽油混合,用SiC 球磨混料6 h,得PCS-SiC-Yb₂SiO₅浆料。其中,PCS: SiC:Yb₂SiO₅ = 2:1:7 (质量比),浆料固含量(SiC+ Yb₂SiO₅)/浆料总重=40%(质量分数,下同)(PCS溶于 汽油中)。用此浆料浸涂已有SiC涂层的2D C_f/SiC复合材 料试样,在空气中干燥后,在真空碳管炉中1300℃下热 处理(主要为PCS的裂解)。之后将上述浸涂裂解过程再 重复1次,得到SiC-Yb₂SiO₅涂层。用SEM观察涂层的表 面形貌。

然后配备Yb₂SiO₅浆料,以乙醇为分散介质,浆料 固含量为60%,调节浆料pH至2~3,并加入分散剂PEG (PEG/Yb₂SiO₅=1%)和粘结剂PVP(PVP/Yb₂SiO₅= 0.8%)。用此浆料浸涂已有SiC和SiC-Yb₂SiO₅涂层的2D C_f/SiC复合材料试样,在空气中干燥后,在真空碳管 炉中1300℃下烧结。之后将上述浆料浸涂烧结过程再 重复1次,得到Yb₂SiO₅涂层。用SEM观察涂层的表面 和横截面形貌。

对无涂层C_f/SiC、SiC涂层C_f/SiC、SiC/Yb₂SiO₅复 合涂层C_f/SiC在1500 ℃静态空气中进行氧化实验。每 隔5h从炉中取出试样,直接放置于室温空气中冷却, 然后用感量为0.1 mg的电子天平称重,按氧化后质量 变化百分率来评价涂层防氧化能力。利用下式计算氧 化质量变化率:

∠m=(m₁-m₀)/m₀×100% (1) 式中∠m为氧化质量变化率,m₀和m₁分别是试样氧化 前和氧化后的质量。

并用SEM观察氧化后试样表面和断面形貌。

2 结果与讨论

2.1 涂层的显微结构

脉冲CVD法所制备的SiC涂层表面SEM照片如图1 所示。可以看出,所制得的SiC涂层非常致密,且没有 裂纹。涂层由无数个大小为几微米的球状SiC团聚体颗 粒组成,颗粒之间没有间隙。每个SiC颗粒其实是由大 量纳米级的SiC晶粒组成。脉冲CVD法相对于常规的 等温等压低压CVD法(LPCVD),具有可以增加涂层 与基体结合强度、减少涂层制备缺陷的优点^[7]。

因为采用脉冲CVD法制得的SiC涂层非常致密, 不利于后续的Yb₂SiO₅浆料浸涂,进而影响到Yb₂SiO₅ 涂层与SiC涂层的结合强度,故在Yb₂SiO₅涂层与SiC 涂层之间增加一层SiC-Yb₂SiO₅过渡层。此过渡层用 PCS-SiC-Yb₂SiO₅浆料浸涂烧结法制备,PCS是一种有 机聚合物,溶于汽油,干燥后粘结强度很大,可以使 Yb₂SiO₅颗粒牢固地粘附在已有SiC涂层的C_f/SiC复合 材料上。PCS经热处理后发生裂解,800℃时裂解产物 主要为无定形的SiC,随着温度的升高,SiC逐渐晶化, 到1300 ℃时, PCS裂解产物基本上为晶态的SiC^[6]。为 了防止涂层在使用过程中非晶SiC发生晶化从而引起 体积收缩导致涂层开裂,本实验中PCS-SiC-Yb₂SiO₅ 涂层的热处理温度为1300 ℃,以使PCS裂解得到晶态 的SiC,最后得到SiC-Yb₂SiO₅涂层。PCS的引入,实现 了SiC陶瓷相的原位生成,可以大大提高涂层的结合强 度。然而, PCS在热解过程中会释放出气体, 且伴随 较大的体积收缩,在裂解产物中产生较高的气孔率。 加入SiC粉的目的是为了降低PCS的百分含量,减小涂 层在热处理过程中的体积收缩。在1300℃热处理过程 中,Yb₂SiO₅颗粒也发生一定程度的烧结,但因PCS的 裂解和非氧化物SiC相的存在,Yb₂SiO₅的烧结在很大 程度上被抑制。SiC-Yb₂SiO₅涂层的表面显微照片中可 以看出(图2),涂层中存在很多的孔隙。此照片为背散 射电子成像,照片中白色的相为Yb₂SiO₅,灰色的成分 为SiC。孔隙率较大的SiC-Yb₂SiO₅涂层有利于后续的 Yb2SiO5 浆料的浸涂,可以提高Yb2SiO5涂层与 SiC-Yb₂SiO₅涂层的结合强度。另外,SiC-Yb₂SiO₅涂层 从成分上也为SiC涂层和Yb2SiO5涂层之间提供了过 渡,也有利于内外涂层之间结合强度的提高。

用 Yb₂SiO₅浆料浸涂烧结法所制得的 SiC/Yb₂SiO₅ 复合涂层的表面和横截面的显微照片如图 3 所示。从

图 1 脉冲CVD SiC涂层表面形貌

Fig.1 Surface morphology of SiC coating prepared by Pulse CVD

图 2 SiC-Yb₂SiO₅涂层表面形貌 Fig.2 Surface morphology of SiC-Yb₂SiO₅ coating

图 3a 及 3b 可以看出,所得涂层很致密目没有裂纹,经 过烧结后涂层中的 Yb₂SiO₅ 晶粒的尺寸仍小于 1 μm。 小尺寸的晶粒有利于涂层抗热震性能的提高。从横截面 照片(图 3c)可以看出(背散射电子照片),从左到右(从 外到内)分别为 Yb₂SiO₅涂层、SiC-Yb₂SiO₅涂层、SiC 涂层和基体 C_f/SiC 复合材料。SiC 涂层厚度约为 15 µm, 与基体结合非常牢固。SiC-Yb₂SiO₅涂层与 SiC 涂层结 合很好。SiC-Yb₂SiO₅涂层与 Yb₂SiO₅涂层之间的分界 线很模糊,这是因为两者结合非常好,而且成分上差异 不大(SiC-Yb₂SiO₅涂层中SiC含量小于30%,且SiC 中 C 的原子序数比 Yb₂SiO₅中的 Yb 小得多,背散射电 子成像主要由 Yb 决定)。不过,中间的 SiC-Yb₂SiO₅ 涂层与外层的 Yb₂SiO₅ 涂层相比,颜色要稍微更灰一 点,这是因为 SiC 在此照片中是灰色的。SiC-Yb₂SiO₅ 涂层与 Yb₂SiO₅涂层的总厚度约为 20 µm, 说明每次浸 涂烧结浆料所得涂层厚度约为5 µm。因为浆料浸涂法 所得涂层在干燥烧结过程中因溶剂挥发等原因收缩较 大,因此必须控制单层涂层的厚度,以防止涂层在干燥 烧结过程中开裂。要制备更厚的涂层,可增加浆料浸涂 烧结的次数。单层涂层的厚度主要通过浆料的粘度来控 制,PCS-SiC-Yb₂SiO₅浆料的粘度主要通过固含量来控 制,而 Yb₂SiO₅ 浆料的粘度则与 pH、分散剂、粘结剂 和固含量都有关系。通过调节 pH 值和使用合适的分散 剂和粘结剂并控制用量,本实验中得到了稳定、粘度低 而固含量高的 Yb₂SiO₅乙醇浆料。低粘度有利于控制涂 层的厚度,高固含量(即溶剂含量低)可以减少涂层在 干燥烧结过程中的收缩,避免涂层开裂。使用乙醇作为 分散介质,是因为乙醇的表面张力小,可以减小涂层在

图 3 SiC/Yb₂SiO₅复合涂层 C_f/SiC 试样表面和横截面 SEM 照片 Fig.3 SEM images of SiC/Yb₂SiO₅ multilayer coating: (a)

surface in low magnification, (b) surface in higher magnification, and (c) cross section 干燥收缩过程中产生的应力。

2.2 涂层的抗氧化性能

未涂层 2D C_ℓ/SiC 复合材料试样、脉冲 CVD SiC 涂 层 C_ℓ/SiC 试样和 SiC/Yb₂SiO₅ 复合涂层 C_ℓ/SiC 试样在 1500℃静态空气中的氧化质量变化率和氧化时间的关 系曲线如图 4 所示。可以看出,没有涂层的 C_ℓ/SiC 表现 出很大的氧化失重。具有 SiC 涂层的 C_ℓ/SiC 试样的氧化 失重率随着时间的延长逐渐增大,氧化 25 h 后,失重率 达到 5%。由于 SiC 涂层及其氧化产物 SiO₂ 膜的保护, 氧气很难扩散进入复合材料。然而,SiO₂ 氧化膜的完整 性和有效性是保证 CVD SiC 涂层氧化防护能力的关键, 而 SiO₂氧化膜中应力的产生以及 SiC/SiO₂界面上孔洞和 间隙的出现大大影响到氧化膜的完整性和有效性,最终 导致 SiC 涂层的氧化防护能力下降^[8]。SiC/Yb₂SiO₅ 复合 涂层试样在静态空气中基本没有氧化失重,在氧化 25 h 后质量基本恒定,说明涂层抗氧化性能优异。

图 5 为复合涂层经 25 h 氧化、10 次热震后的表面 形貌。从中可以看出,涂层没有裂纹,说明其抗热震 性能优异。Yb₂SiO₅ 与 SiC 热膨胀系数非常接近,中 间过渡层 SiC-Yb₂SiO₅涂层孔隙率较高,外层 Yb₂SiO₅ 涂层中的晶粒很小,这些因素都有利于复合涂层抗热 震性能的提高。

图6为C_f/SiC复合材料试样和SiC/Yb₂SiO₅复合涂层 C_f/SiC试样在1500 °C静态空气中氧化25 h后的断面形 貌。可见,没有涂层的复合材料氧化后C纤维基本完全 被消耗,在断面上留下了一个个孔洞。而SiC/Yb₂SiO₅ 复合涂层C_f/SiC试样中的C纤维完全没有发生氧化,并 且断面拔出的C纤维很长,说明试样在氧化试验后韧性 没有降低,这表明SiC/Yb₂SiO₅复合涂层除了抗氧化性 能优异外,还起到了一定的热障涂层的作用,因而使得 复合材料经历高温后力学性能不下降。

- 图 4 C_f/SiC、SiC涂层C_f/SiC和SiC/Yb₂SiO₅复合涂层C_f/SiC在 1500 ℃空气中的氧化失重曲线
- Fig.4 Oxidation curves of uncoated C_f /SiC, SiC coated C_f /SiC, and SiC/Yb₂SiO₅ coated C_f /SiC samples at 1500 °C in air

- 图 5 SiC/Yb₂SiO₅复合涂层 C_f/SiC 试样经氧化热震后表面形貌
- Fig.5 Surface morphology of SiC/Yb₂SiO₅ multilayer coating after oxidation and thermal shock

- 图 6 C_f/SiC 复合材料和 SiC/Yb₂SiO₅ 复合涂层 C_f/SiC 试样在 1500 ℃氧化 25 h 后断面形貌
- Fig.6 Fracture surface micrographs of uncoated C_{f}/SiC (a) and SiC/Yb_2SiO_5 coated C_f/SiC (b) after oxidation 25 h at 1500 $^\circ\!C$

3 结 论

1) 用 PCS-SiC-Yb₂SiO₅ 浆料浸涂法在己有 CVD SiC 涂层的 C_f/SiC 复合材料上制备 SiC-Yb₂SiO₅ 过渡

层时,SiC 有机前驱体 PCS 的引入能大大增加涂层的结合力。

2) 亚微米级 Yb₂SiO₅粉体的使用可以降低涂层的 烧结温度,提高其致密性。

3) 孔隙率较大的 SiC-Yb₂SiO₅ 涂层有利于后续的 Yb₂SiO₅ 浆料的浸涂,可以提高 Yb₂SiO₅ 涂层与 SiC-Yb₂SiO₅ 涂层的结合强度。1500 ℃静态空气中氧 化试验表明 SiC/Yb₂SiO₅ 复合涂层具有优异的抗氧化 性能。

参考文献 References

- [1] Naslain R. Compos Sci Technol [J], 2004, 64: 155
- [2] Huang Jianfeng et al. Ceram Int[J], 2006, 32: 417
- [3] Huang Jianfeng et al. Ceram Int[J], 2007, 33: 887
- [4] Lee K N, Fox D S, Bansal N P. J Eur Ceram Soc[J], 2005, 25(10): 1705
- [5] Wen Haiming et al. J Am Ceram Soc[J], 2007, 90 (12): 4043
- [6] Ding Yusheng(丁玉生). Preparation and Properties of Fiber Reinforced Silicon Carbide Matrix Composites by Pressure Assisted Technology(纤维增强碳化硅基复合材料的压力辅 助制备及性能研究) [D]. Shanghai : Shanghai Institute of Ceramics, 2007: 51
- [7] Wen Haiming(温海明), Dong Shaoming(董绍明), Zhou Qing(周清) et al. Proceedings of the 15th International Conference on Composites Engineering (第15届复合材料/纳 米工程国际会议论文集) [C]. Haikou: [s.n], 2007: 1077
- [8] Cheng Laifei, Xu Yongdong, Zhang Litong et al. Carbon [J], 2002, 40: 2229

SiC/Yb₂SiO₅ Multilayer Coatings for Oxidation Protection of C_f/SiC Composites

Wen Haiming ^{1,2}, Dong Shaoming ¹, Ding Yusheng ¹, Zhang Xiangyu ¹, He Ping ¹, Gao Le ¹
(1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)
(2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Ytterbium silicate (Yb₂SiO₅) is a promising oxidation protective coating material for C fiber-reinforced SiC (C_f/SiC) composites. Firstly, the SiC bond coat was prepared on C_f/SiC composites by pulse CVD. The single-phase Yb₂SiO₅ powders of 200~300 nm in size were synthesized by sol–gel process. Then for the first time, the SiC-Yb₂SiO₅ intermediate coat was applied on the SiC coated C_f/SiC composites through PCS-SiC-Yb₂SiO₅ slurry application. The incorporation of PCS could significantly improve the adhesion of the coating because of the great stickiness of PCS and its ability to form SiC ceramic in situ after pyrolysis. The Yb₂SiO₅ slurry with low viscosity and high solid content was prepared, and the dense Yb₂SiO₅ top coat with fine crystallites was fabricated by dip-coating and subsequent sintering. The oxidation tests at 1500 °C in stationary air indicate that the fabricated SiC/Yb₂SiO₅ multilayer coatings possess a outstanding oxidation resistance.

Key words: C_f/SiC composites; oxidation protective coating; ytterbium silicate; slurry application

Biography: Wen Haiming, Candidate for Master, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China, Tel: 0086-21-52415207, E-mail: wenhaiming1984@mail.sic.ac.cn; Corresponding Author: Dong Shaoming, Researcher, Professor, Tel: 0086-21-52414324, E-mail: smdong@mail.sic.ac.cn