纳米晶 Cu-50Ag 合金在酸性溶液中腐蚀行为研究

曹中秋,梁秋颖,田秋月

(沈阳师范大学, 辽宁 沈阳 110034)

摘 要:与粉末冶金法(PM)制备的常规尺寸合金对比,研究了通过热压液相还原法(LPR)和机械合金化法(MA)合成 的 Cu-50Ag 合金粉末制备的块体纳米晶 Cu-50Ag 合金在酸性溶液中的腐蚀行为。结果表明:在 Na₂SO₄溶液中加入 H₂SO₄后, 3 种合金的腐蚀速度均加快。随着 H₂SO4 浓度的增加, PMCu-50Ag 和 LPRCu-50Ag 合金的腐蚀速度均未发生明显变化, 而 MACu-50Ag 合金的腐蚀速度则加快。在 Na₂SO₄溶液中,3 种合金均未出现钝化现象,随着 H₂SO₄的加入,合金出现了钝化 现象。3 种合金的腐蚀速率按 PMCu-50Ag, LPRCu-50Ag 和 MACu-50Ag 合金的顺序增加,其中 LPRCu-50Ag 合金的腐蚀速 度略大于 PMCu-50Ag 合金,但明显小于 MACu-50Ag 合金。

关键词: Cu-Ag 合金; 双相组织; 纳米晶; 腐蚀电化学

中图法分类号: TG146.1⁺1 文章编号: 1002-185X(2015)11-2836-06 文献标识码: A

纳米材料因具有独特的小尺寸效应、表面与界面效 应以及量子尺寸效应等使其在电、磁、光、声和热等方 面呈现出许多独特的理化性能而成为材料科学研究领域 的热点之一,并引起人们的广泛关注[1-3]。目前对纳米材 料的研究主要集中在纳米晶体材料的制备方法、结构与 性能及其应用等方面[4-6],而对纳米材料腐蚀性能的研究 却相对较少。事实上,材料经纳米化后,其腐蚀性能及 腐蚀机理如何变化,腐蚀速度是提高了,还是降低了, 对纳米材料的实用化非常重要。如果腐蚀性能提高了, 就会为纳米材料的应用提供有力保障,如果腐蚀性能降 低了,其使用寿命和应用前景必然会受到很大的限制。

有关纳米材料腐蚀性能的研究直到 20 世纪 90 年代 才引起人们的注意,如W. Zerger 等采用磁控溅射技术制 备了纳米晶 FeAls 合金并研究了其在 pH=1 和 pH=6 的 Na₂SO₄ 溶液中的腐蚀行为,发现大量高密度晶界的存在 能使 Al 快速溶解,导致合金表面与内部存在较大的浓度 梯度,Al 向合金表面扩散的速度明显加快,促使合金表 面形成了钝化膜,明显提高了纳米晶 FeAl₈ 合金的耐蚀性 能^[7]。孟国哲等研究了利用磁控溅射技术制备的 Fe-10Cr 纳米涂层在酸性溶液中的钝化行为,发现晶粒尺寸降低后 活性溶解增强;在钝化膜形成过程中Cr更容易富集,从 而使合金更容易钝化,提高了其耐蚀性能等^[8]。R. Mishra 等研究电沉积法制备的纳米晶 Ni 的腐蚀电化学行为时发 现纳米晶 Ni 具有典型的活化-钝化特征且随着晶粒尺寸 的降低,钝化膜的保护性下降,而活性溶解的速度也降低

等^[9]。李瑛等研究了表面纳米化低碳钢在酸性溶液中的腐 蚀电化学行为,发现纳米化后低碳钢的腐蚀速度增加,其 腐蚀电化学行为存在尺寸效应。当晶粒尺度低于 35 nm 时,腐蚀速度随晶粒尺度的降低而增加,当晶粒尺度高于 35 nm 后,晶粒尺度的改变对腐蚀速度无显著影响等^[10]。 尽管目前已对纳米材料的耐蚀性能开展了一些研究,也发 现纳米化后,可使材料的腐蚀速度增加,也可使材料的腐 蚀速度降低,但纳米化对改变材料腐蚀性能的具体作用机 理等方面仍不十分清楚[11,12],且目前研究大多都集中在表 面纳米化、纳米薄膜及纳米涂层上,而对块体尤其是纳米 晶二元双相合金的腐蚀性能研究还是相对较少[13-15]。为 此,本研究与粉末冶金制备的常规尺寸合金相比,研究了 热压液相还原法和机械合金化法合成的纳米级合金粉末 制备的2种块体纳米晶Cu-50Ag(at%)合金在酸性溶液 中腐蚀行为以及不同制备工艺对其腐蚀行为的影响。

1 实 验

采用液相还原法(Liquid Phase Reduction, LPR)通 过优化反应条件制备了纳米晶 Cu-50Ag 合金粉末, 其制 备过程如下^[16]:在1 mol/L CuSO4 和1 mol/L AgNO3 溶液 中加入氨水,调节溶液 pH 为 11,加入高分子表面活性 剂聚乙烯吡咯烷酮 (PVP), 在 70 ℃加入 2 mol/L 还原 剂水合肼 N₂H₄ H₂O,反应结束后,过滤并用丙酮洗涤粉 末,在常温下干燥获得晶粒尺寸约为45 nm的 Ag-50Cu 合金粉末。

收稿日期: 2014-11-15

基金项目:国家自然科学基金 (51271127);辽宁省高等学校优秀人才支持计划 (LR2011032)

作者简介: 曹中秋, 男, 1965年生, 博士, 教授, 沈阳师范大学化学与生命科学学院, 辽宁 沈阳 110034, 电话: 024-86593313, E-mail: caozhongqiu6508@sina.com

采用机械合金化法(Mechanical Alloying, MA)制 备了纳米晶 Cu-50Ag 合金粉末,其制备过程如下:将纯 度为99.99%Cu粉和Ag粉按原子比1:1混合后在QR-ISP 行星式球磨机(南京大学科学仪器厂产)上球磨60h获 得晶粒尺寸约为5 nm的Ag-50Cu合金粉末,球磨转速 为320 r/min,磨球和球罐材料都为1Cr18Ni9Ti不锈钢, 球料质量比为10:1,整个球磨过程在抽真空后充氩气进 行保护以防止样品被氧化。

采用真空热压技术制备块体纳米晶 Cu-50Ag 合金, 其制备过程如下:将适量纳米晶 Cu-50Ag 合金粉末放入 直径为 20 mm 的石墨模具中,随后装入真空度约为 0.06 Pa 的热压炉中,并在 650 ℃、86 MPa 压力下,保持 10 min,然后随炉冷却。热压后的 Cu-50Ag 合金的密度用 排水法测量,达到了理论值的 98%以上,合金的致密度 很高。用日本理学 D/MAX-rA 衍射仪(Cu Kα),采用半 高峰法(FWHD),应用 Scherrer 公式(扣除 Kα2 引起的峰 宽化)计算液相还原法制备的粉末热压后的平均晶粒尺 寸约为 60 nm,机械合金化法制备的粉末热压后的平均 晶粒尺寸约为 17 nm。尽管晶粒的尺寸经过热压后会长 大,但仍可保持在纳米尺度范围内。

常规尺寸 Cu-50Ag 合金块体材料采用粉末冶金法 (Powders Metallurgy, PM)即将纯度为 99.99%的纯金 属粉末通过真空热压技术制备而成,其工艺条件与制备 纳米晶 Cu-50Ag 合金块体材料的相同。热压后,用排水 法测量其密度,达到了理论值的 98%,合金的致密度较 高,晶粒尺寸约为 120 μm。

从合金锭切取面积约为1 cm² 的试片, 焊上 Cu 导线 后,用环氧树脂和聚酰胺树脂封装。将封装好的试样在 金相预磨机上分别用 800#、1000#和 2000#的砂纸打磨, 然后抛光至无划痕,用水、无水乙醇及丙酮清洗后干燥。 腐蚀电化学测量所用的设备为美国 EG&G 公司生产的 PARM273A 和 M5210 电化学综合测量系统,测量电极 为三电极系统,饱和甘汞电极(SCE)作为参比电极, 铂电极 (Pt) 作为辅助电极, 合金试样作为工作电极。 分别测试不同工艺制备 Cu-50Ag 合金试样在不同浓度 H₂SO₄ 溶液中的腐蚀电化学性能。腐蚀溶液用一次蒸馏 水配制,所选的试剂为分析纯。动电位极化曲线扫描速 度为 0.5 mV/s, 电位扫描范围为--0.8~1.6 V (相对开路电 位),数据经计算机采集后用 Cview2 软件拟合,获得相 应腐蚀电位和腐蚀电流密度等腐蚀电化学参数。交流阻 抗谱频率范围为100 kHz-~mHz,数据经计算机采集后用 Zview2 软件处理并拟合等效电路图。

2 结果与讨论

2.1 开路电位

图1为不同工艺制备的Cu-50Ag合金在酸性溶液中

的自腐蚀电位随时间变化曲线。从图中可以看出,随着时间的延长,合金的自腐蚀电位趋于稳定。常规尺寸 PMCu-50Ag 合金在 0.05 mol/L Na₂SO₄溶液中的自腐蚀电位为51 mV,随着 H₂SO₄的加入和浓度的增加,合金的自腐蚀电位分别为 33、33、31 和 30 mV。在中性 Na₂SO₄溶液中加入 H₂SO₄后,合金的自腐蚀电位负移,说明腐蚀倾向增大;但随着 H₂SO₄浓度的增加,合金的自腐蚀电位没有出现明显的负移,说明腐蚀倾向没有加剧。纳米晶 LPRCu-50Ag 合金在 0.05 mol/L Na₂SO₄溶液中的自腐蚀电位为别为 32、32、31 和 30 mV。合金的自腐蚀电位没有出现明显的负移,说明腐蚀倾向并没有发生改变。纳米晶 MACu-50Ag 在 0.05 mol/L Na₂SO₄溶液中的自腐蚀电位为 37 mV,随着 H₂SO₄的加入和浓度的增加,合金的自腐蚀电位分别为 50、44、6 和-1 mV。

- 图 1 Cu-50Ag 合金在酸性溶液中的自腐蚀电位随时间变化曲线
- Fig.1 Curves of free corrosion potentials vs time of Cu-50Ag alloys in acidic solutions: (a) PMCu-50Ag, (b) PRCu-50Ag, and (c) MACu-50Ag

在中性 Na₂SO₄ 溶液中加入 H₂SO₄ 后,合金的自腐蚀电 位正移,说明腐蚀倾向减弱;但随着 H₂SO₄ 浓度的增加, 合金的自腐蚀电位出现负移,说明腐蚀倾向增加。

图 2 为不同工艺制备的 Cu-50Ag 合金在酸性溶液中的自腐蚀电位比较图。从图中可以看出,在中性 Na₂SO₄ 溶液中,合金的自腐蚀电位按 PMCu-50Ag、MACu-50Ag 和 LPRCu-50Ag 合金的顺序依次降低,说明腐蚀倾向依 次增加。当 H₂SO₄ 加到 Na₂SO₄ 溶液中后,PMCu-50Ag 和 LPRCu-50Ag 合金的自腐蚀电位几乎相等,说明腐蚀 倾向没有随晶粒尺寸减小和溶液浓度增加而加剧。然而,对于 MACu-50Ag 合金,当 H₂SO₄浓度小于 0.06 mol/L 时,其自腐蚀电位高于 PMCu-50Ag 或 LPRCu-50Ag 合金。相反,当 H₂SO₄浓度大于 0.06 mol/L 时,其自腐蚀

2.2 动电位极化曲线

图 3 为不同工艺制备的 Cu-50Ag 合金在酸性溶液中的动电位极化曲线。表 1 为用 Corroview 软件拟合得出的腐蚀电位 *E*_{corr}及腐蚀电流密度 *I*_{corr}等腐蚀电化学参数。可见, PMCu-50Ag、LPRCu-50Ag 和 MACu50Ag 合金在中性 Na₂SO₄ 溶液中加入 H₂SO₄ 后,腐蚀电流密度均增大,表明腐蚀速度加快。随着 H₂SO₄ 浓度的增加, PMCu-50Ag 和 LPRCu-50Ag 合金的腐蚀电流密度均未出现明显变化,表明合金在酸性溶液中的耐蚀性能较好。相反, MACu-50Ag 合金的腐蚀电流密度逐渐变大,这表明合金耐蚀性能下降。

图 4 是不同工艺制备的 Cu-50Ag 合金在酸性溶液中的腐蚀电流密度比较图。可见,不同工艺制备的 Cu-50Ag 合金的腐蚀速率按 PMCu-50Ag, LPRCu-50Ag 和 MACu-50Ag 顺序增加。事实上,纳米化对合金活性溶解过程的影响主要涉及金属离子的传输速度。由于纳米 化后晶粒尺寸急剧降低,合金中存在大量的晶界,这些激增晶界处原子排列不规则,有较大的晶格畸变能,与 晶界内原子相比,晶界处的原子往往有较高的能量,晶

Fig.2 Comparison of free corrosion potentials of Ag-50Cu alloys prepared by different processes in acidic solutions

图 3 Cu-50Ag 合金在酸性溶液中的动电位极化曲线 Fig.3 Polarization curves of Cu-50Ag alloys in acidic solutions: (a) PMCu-50Ag, (b) LPRCu-50Ag, and (c) MACu-50Ag

表 1 Cu-50Ag 合金在酸性溶液中腐蚀电化学参数 Table 1 Corrosion electrochemical parameters of Cu-50Ag alloys in acidic solutions

Solutions /mol L ⁻¹	PMCu-50Ag		LPI	RCu-50Ag	MACu-50Ag		
	E _{corr} / mV	$I_{\rm corr}/$ ×10 ⁻⁷ A cm ⁻²	E _{corr} / mV	$I_{\rm corr}/$ ×10 ⁻⁷ A cm ⁻²	E _{corr} / mV	$I_{\rm corr}/$ ×10 ⁻⁷ A cm ⁻²	
0.05Na ₂ SO ₄	41.22	0.575	36.59	2.891	-0.44	101.242	
$0.02H_2SO_4$	20.15	57.883	12.95	66.532	-0.14	110.313	
0.05 H ₂ SO ₄	16.30	57.507	13.53	66.673	-0.34	571.293	
0.10 H ₂ SO ₄	18.27	57.141	12.58	66.492	-0.46	2775.421	
0.50 H ₂ SO ₄	23.44	57.039	11.21	66.644	-0.46	3919.610	

界有自发向低能状态转变的趋势,能为金属离子传输提供大量的通道,离子传输加快,使参与腐蚀反应的活性 原子数增加。再有激增晶界处附近存在大量非平衡的缺陷,表面活性点增多,在溶解过程中也加速了金属离子 的传输过程,这些都导致了合金腐蚀速度的加快。

图 4 Cu-50Ag 合金酸性溶液中腐蚀电流密度比较

Fig.4 Comparison of corrosion current densities of Ag-50Cu alloys in acidic solutions.

MACu-50Ag 合金的腐蚀速度高于 LPRCu-50Ag 合金, 这主要是由于 MACu-50Ag 合金晶粒尺寸约为 17 nm, 而 MACu-50Ag 合金晶粒尺寸约为 60 nm,尽管 MACu-50Ag 和 LPRCu-50Ag 合金的晶粒尺寸都在纳米尺寸范 围内,但 MACu-50Ag 合金晶粒尺寸要比 LPRCu-50Ag 合金晶粒尺寸要小,因此腐蚀速度加快。

3 种 Cu-50Ag 合金都不具备自钝化能力,在中性 Na₂SO₄溶液中,随着极化电位的升高没有出现钝化现象。 加入 H₂SO₄ 后,当极化电位较低时,只有 MACu-50Ag 合金出现了钝化现象,其维钝电流密度随H₂SO₄浓度的 增加而加大。当极化电位较高时,3种合金均出现了钝 化现象,随着H₂SO₄浓度的增加,钝化区间逐渐加大, 当 H₂SO₄ 浓度等于 0.50 mol/L 时,出现二次钝化,第1 次钝化区间很窄,钝化膜刚产生不久随后便溶解,接着 又生成稳定的钝化膜,钝化区间较宽。表2为 Corroview 软件拟合得出的较高极化电位下的维钝电流密度 Ip和致 钝电位 $E_{\rm IP}$ 。可见,随着 H_2SO_4 浓度的增加,合金的致钝 电位逐渐降低,合金发生钝化的倾向逐渐增加,合金的 维钝电流密度逐渐降低, 钝化区间增加, 合金的钝化能 力增强。比较 3 种 Cu-50Ag 合金发现,相同 H₂SO₄浓度 下,纳米晶 LRCu-50Ag 合金的维钝电流密度比常规尺寸 PMCu-50Ag 合金的要低, 而纳米晶 MACu-50Ag 合金的 维钝电流密度却比常规尺寸 PMCu-50Ag 合金的要高。 事实上,纳米化对合金钝化性能的影响主要包括钝化膜 的形成和溶解2个过程,一方面,纳米化后合金中存在 大量的晶界,钝性金属离子传输快,同时显微组织均匀 细化,表面活性高,有利于钝性元素在钝化膜内快速富 集,从而形成均匀致密的钝化膜^[17,18],使合金的维钝电 流密度降低, 钝化性能增强; 另一方面纳米化后合金形 成的钝化膜尺寸较低,溶解速度也较快,使合金的维钝 电流密度增加,钝化性能降低。对于纳米晶 LRCu-50Ag 合金,第一方面起主要作用,纳米化后,合金的维钝电

表 2 Cu-50Ag 合金在酸性溶液中钝化参数 Table 2 Passivation parameters of Cu-50Ag alloys in acidic

	solı	itions					
Solutions/ mol L ⁻¹	PMCu-50Ag		LF	PRCu-50Ag	MACu-50Ag		
	$E_{\rm Ip}/$	$I_{\rm p}$ /	$E_{\rm Ip}$	$I_{\rm p}$	$E_{\rm Ip}/$	$I_{\rm p}$	
	mV	$\times 10^{-3}$ A cm ⁻²	mV	$\times 10^{-3}$ A cm ⁻²	mV	$\times 10^{-3}$ A cm ⁻²	
0.02H ₂ SO ₄	1470	11.75	1410	10.00	-	-	
0.05 H ₂ SO ₄	1110	8.13	1010	3.98	1350	11.57	
0.10 H ₂ SO ₄	968	7.76	846	3.80	995	8.92	
0.50 H ₂ SO ₄	636	5.13	612	3.24	680	6.31	

流密度降低。相反,对于纳米晶 MACu-50Ag 合金,由 于其晶粒尺寸比 LPRCu-50Ag 合金小,生成的钝化膜的 尺寸也较小,钝化膜的溶解速度也加大,第二方面起主 要作用,合金的维钝电流密度增大。

2.3 交流阻抗谱

图 5 为不同工艺制备的 Cu-50Ag 合金在酸性溶液中

的交流阻抗谱(Electrochemical Impedance Spectroscopy, 简化 EIS)。图 6 为其相应的等效电路图。表 3 为用 Zview 软件拟合得出的相应的等效电路元件参数。可见, 不同工艺制备的 3 种 Cu-50Ag 合金在中性 Na₂SO₄ 溶液 中的交流阻抗谱由单容抗弧组成,腐蚀过程受电化学反 应控制。在中性 Na₂SO₄ 溶液中加入 H₂SO₄ 后, PMCu-50Ag 和 LPRCu-50Ag 合金在高频和中频处表现为 2 个 连续的圆弧,而 MACu-50Ag 合金仍为单容抗弧。在低 频端出现了"扩散尾",表明其腐蚀过程由电化学反应控 制转变为扩散控制。随着H₂SO₄的加入,容抗弧的曲率 半径减小,电荷传递电阻 R_t减小,表明合金的腐蚀速度 加快。此外,容抗弧的圆心偏离实轴和常相位角元件 CPE 在等效电路图中的出现,说明存在着一定的弥散效 应^[19]。随着 H₂SO₄ 浓度的增加, PMCu-50Ag 和 LPRCu-50Ag 合金容抗弧的曲率半径没有明显的变化, 电荷传 递电阻 R_t 也没有明显的变化,表明合金在酸性溶液中 的耐蚀性较好,而 MACu-50Ag 合金容抗弧曲率半径 随H₂SO₄浓度的增加逐渐减小,电荷传递电阻 R_t也逐渐

减小,合金的耐蚀性下降,这与极化曲线的测定结果相 一致。

图 6 Cu-50Ag 合金在酸性溶液中的等效电路图

Fig.6 Equivalent circuits of Cu-50Ag alloys in acidic solutions:(a) single-capacitive loop, (b) single-capacitive loop with diffusion tail, and (c) double capacitive loops with diffusion tails

Samples	$C_{\mathrm{H_2SO_4}}/$ mol L ⁻¹	$R_{\rm s}/$ $\Omega \cdot {\rm cm}^2$	CPE2-T/ ×10 ⁻⁴ F cm ⁻²	CPE2-P	$R_{\rm t}/$ $\Omega \cdot {\rm cm}^2$	$\frac{\text{CPE1-T}}{\times 10^{-5} \text{ F} \text{ cm}^{-2}}$	CPE1-P	$R_{ m po}/$ $\Omega \cdot m cm^2$	$W_{ m o}$ -R/ $\Omega \cdot m cm^2$	$W_{ m o}$ -T/ $\Omega \cdot m cm^2$	W _o -P
PMCu-50Ag	0	38.76	0.041	0.820	20992	-	-	-	-	-	-
	0.020	33.64	3.566	0.861	676	4.293	0.832	177.7	700	83.3	0.859
	0.050	43.48	1.552	0.826	679	1.997	0.835	140.1	2075	145.7	0.742
	0.100	17.41	2.931	0.787	729	2.524	0.866	115.8	1372	94.1	0.808
	0.500	5.23	5.032	0.710	720	4.551	0.857	106.6	1313	147.1	0.855
LPRCu-50Ag	0	41.63	0.068	0.801	20631	-	-	-	-	-	-
	0.020	30.80	6.861	0.850	146	9.870	0.765	72.4	649	195.3	0.844
	0.050	13.03	12.18	0.717	169	12.54	0.797	20.6	444	117.5	0.839
	0.100	8.55	1.413	0.751	158	16.56	0.810	15.2	384	126.3	0.630
	0.500	3.80	1.298	0.736	139	99.90	0.873	19.4	536	172.6	0.830
MARCu-50Ag	0	27.79	2.081	0.606	2329	-	-	-	-	-	-
	0.020	36.46	74.58	0.535	475	-	-	-	1381	283.4	0.916
	0.050	11.92	26.92	0.660	303	-	-	-	797	286.5	0.918
	0.100	6.67	57.83	0.639	2723	-	-	-	281	151.8	0.750
	0.500	4.72	1.101	0.618	2703	-	-	-	178	159.9	0.921

Table 3	Equivalent circuit parameters of Cu-50Ag alloys in acidic solutions
	表 3 Cu-50Ag 合金在酸性溶液中的等效电路元件参数

3 结 论

1) 在 Na₂SO₄溶液中,自腐蚀电位按 PMCu-50Ag、 MACu-50Ag 和 LPRCu-50Ag 合金顺序依次降低。加入 H₂SO₄后, PMCu-50Ag 和 LPRCu-50Ag 合金的自腐蚀电 位几乎相等,浓度较低时低于 MACu-50Ag 合金,但浓 度较高时却高于 MACu-50Ag 合金。

2) 加入 H₂SO₄ 后,3 种合金的腐蚀速度均加快。随 着浓度增加,PMCu-50Ag 和 LPRCu-50Ag 合金腐蚀速 度未发生明显变化,而 MACu-50Ag 合金则加快。 LPRCu-50Ag 合金腐蚀速度略大于 PMCu-50Ag 合金,但 明显小于 MACu-50Ag 合金。随着 H₂SO₄加入,合金出 现钝化现象。

3) 加入 H₂SO₄后, PMCu-50Ag 和 LPRCu-50Ag 合金 交流阻抗谱则由单变为双容抗弧, 3 种合金均有"扩散尾" 出现,腐蚀过程受扩散控制。随着浓度增加, PMCu-50Ag 和 LPRCu-50Ag 合金传递电阻没有明显变化,而 MACu-50Ag 合金则减小,这与极化曲线测定结果一致。

参考文献 References

- Lu K. Journal of Materials Science and Technology[J], 1999, 15(3): 193
- [2] Wang Z B, Tao N S, Li S et al. Materials Science and Engineering A[J], 2003, 352(1-2): 144
- [3] Hassani F Z, Ketabchi M. Materials Science and Engineering A[J], 2011, 528(21): 6426
- [4] Tjong S C, Chen H. Materials Sciences and Engineering R[J], 2004, 45: 1
- [5] Zhao Zhiming(赵志明), Zhang Xiaojing(张晓静), Ma Eryun(马二云) et al. Rare Metals Materials and Engineering(稀有金属材料与工程)[J], 2014, 43(1): 145
- [6] Zhao Yong(赵 勇), Hua Yunfeng(华云峰), Wang Yanfeng(王彦峰) et al. Rare Metals Materials and Engineering(稀有金属材料与工 程)[J], 2013, 42(6): 1165
- [7] Zeiger W, Schneider M, Scharnweber D. Nanostructured Materials[J], 1995, 6: 1013
- [8] Meng G Z, Li Y, Wang F H. *Electrochimica Acta*[J], 2006, 51(20): 4277

- [9] Mishra R, Balasubramaniam R. Corrosion Science[J], 2004, 46(12): 3019
- [10] Li Ying(李 瑛), Wang Fuhui(王福会), Liu Gang(刘 刚). Journal of Chinese Society for Corrosion and Protection(中国腐蚀与防 护学报)[J], 2001, 21: 215
- [11] Intrui R B, Szklarska Z-Smialowska. Corrosion[J], 1992, 48: 398
- [12] Lu H B, Li Y, Wang F H. Thin Solid Films[J], 2006, 510: 197
- [13] Luo W, Qian C, Wu X J et al. Materials Science and Engineering A[J], 2007, 452-453: 524
- [14] Barbucci A, Farne G, Mattaezzi P. Corrosion Science[J], 1999, 41: 463
- [15] Wang X Y, Li D J. Electrochimica Acta[J], 2002, 47: 3939
- [16] Zhu Ximing(祝溪明), Song Liang(宋 亮). Journal of Shenyang Normal University(沈阳师范大学学报)[J], 2008, 26(2): 206
- [17] Liu L, Li Y, Wang F H. *Electrochim Acta*[J], 2007, 52: 2392
- [18] Liu L, Li Y, Wang F H. Electrochim Acta[J], 2007, 52: 7193
- [19] Conway B E, Bockris J O, White R E. Modern Aspects of Electrochemical Impedance Spectroscopy and Its Applications
 [M]. New York: Kluwer Academic/Plenum Publishers, 1999: 117

Corrosion Behavior of Nanocrystalline Bulk Cu-50Ag Alloys in Acidic Solutions

Cao Zhongqiu, Liang Qiuying, Tian Qiuyue (Shenyang Normal University, Shenyang 110034, China)

Abstract: The corrosion behavior of two nanocrystalline bulk Cu-50Ag alloys prepared from hot pressing powders which were synthesized by liquid phase reduction or mechanical alloying was investigated in acidic solutions as compared with the corresponding coarse grained Cu-50Ag alloy. Results show that the corrosion rates of the three alloys become faster after H₂SO₄ is added to Na₂SO₄ solutions. The corrosion rates of PMCu-50Ag and LPRCu-50Ag alloys remain unchanged, but those of MACu-50Ag alloy become faster with the increment of H₂SO₄ solution concentrations. In Na₂SO₄ solutions, there are no passivation phenomena for three Cu-50Ag alloys. On the contrary, there are passivation phenomena after H₂SO₄ is added to Na₂SO₄ solutions. The rates of LPRCu-50Ag alloy are slightly higher than those of PMCu-50Ag alloy, but are evidently lower than those of MACu-50Ag alloy. In Na₂SO₄ solutions, EIS of three alloys are composed of single capacitive loops. There are diffusion tails after H₂SO₄ is added to Na₂SO₄ solutions. This indicates the corrosion processes are controlled by diffusion.

Key words: Cu-Ag alloys; two-phase microstructure; nanocrystalline; electrochemical corrosion

Corresponding author: Cao Zhongqiu, Ph. D., Professor, College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, P. R. China, Tel: 0086-24-86593313, E-mail: caozhongqiu6508@sina.com