

Cite this article as: Rare Metal Materials and Engineering, 2020, 49(7): 2269-2274

ARTICLE

Study of Phase Equilibria in the Cu-Co-Zn Ternary System

Wang Cuiping ¹ ,	Wu Chao ¹ ,	Deng Yuling ¹ ,	Zhang Jinbin ¹ ,	Yang Mujin ¹ ,
Yang Shuiyuan ¹ ,	Han Jiajia ¹ ,	Lu Yong ¹ ,	Liu Xingjun ^{1, 2}	

¹ College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, China; ² School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China

Abstract: The phase equilibria of the Cu-Co-Zn ternary system at 800 °C and 1000 °C were investigated by electron probe microanalysis and X-ray diffraction. Results show that no ternary compound was found. At 800 °C, the solubility of Co in the β -CuZn, and Cu in the β 1-CoZn at 800 °C are 32.36 at% and 5.28 at%, respectively. The γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ show that the same crystal structure, and thus an infinite region of mutual solubility is observed in the Cu-Co-Zn ternary system. It is confirmed that as the temperature rises from 800 °C to 1000 °C, the liquid-phase region is further expanded. The isothermal section of 1000 °C is simple. The phases of β -CuZn, β 1-CoZn, γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ disappear. The region of liquid phase is very large.

Key words: Cu-Co-Zn ternary system; phase equilibria; electron probe microanalysis

In the design and development of lead-free solder, Cu is often used as the preferred element for solder alloys. For example, the common SAC305, SAC105, Sn-0.7Cu, etc. contain Cu element. Meanwhile, the appearance of Cu interconnection technology in the electronic packaging field made Cu become the main interconnection material in the integrated circuit^[1]. Therefore, the study of Cu-containing phase diagrams is very important for the development of lead-free solders and the interface reaction of soldering. Zn has also attracted wide attention due to its low price and ability to form eutectic structure with Sn^[2,3]. In recent years, Co has also become an important alloying element for lead-free solder systems. Related studies have shown that the addition of trace amounts of Co can improve the wettability of solder, while the addition of Co can make the interfacial layer of intermetallic compound (IMC). The layer structure is more compact and plays a crucial role in improving the mechanical properties^[3]. Although the above alloving elements have achieved a great deal of research results, the experimental research on the Cu-Co-Zn ternary system is still very scarce, and the experimental determination of Cu-Co-Zn ternary phase diagram is important to improve the lead-free solder

database. Therefore, it is necessary to conduct in-depth experimental research on the phase equilibrium information of the Cu-Co-Zn ternary system.

Three binary subsystems and stable solid phases of Cu-Co^[4], Co-Zn^[5] and Cu-Zn^[6] constitute the Cu-Co-Zn ternary system, as shown in Fig.1 and Table 1. The Cu-Co phase diagram is a very simple system without any intermetallic compounds which has been reported by Nishizawa and Ishida^[4]. Pattanaik^[7] et al investigated the structure of Cu-Co alloy and Kubišta^[8] et al determined the molar excess Gibbs energy, enthalpy and entropy of mixing, as well as the thermodynamic activities of components in the liquid Cu-Co system. Cao^[9] et al investigated the phase separation in the metastable miscibility gap of undercooled Cu-Co alloys by electromagnetic levitation and differential thermal analysis. For Co-Zn system, Straumal^[10] et al determined the partial phase boundaries in the Co-Zn system. Cu-Zn phase diagram was reported by Okamoto^[5] which demonstrates five stable compounds β (CoZn), β 1(CoZn), γ (Co₅Zn₂₁), γ (CoZn₇) and γ (CoZn₁₃). Cu-Zn is an important brass alloy system, and Spencer^[11] et al performed the first thermodynamic calculation of the Cu-Zn system in 1986. Kowalski^[12] et al and

Received date: July 25, 2019

Foundation item: National Natural Science Foundation of China (51771158); Joint Fund to Promote Cross-Strait Scientific and Technological (U1605243)

Corresponding author: Liu Xingjun, Ph. D., Professor, College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China, Tel: 0086-592-2180606, E-mail: lxj@xmu.edu.cn

Copyright © 2020, Northwest Institute for Nonferrous Metal Research. Published by Science Press. All rights reserved.

David^[13] et al re-assessed the Cu-Zn binary system. In addition, Chen^[14], Wang^[15], Du^[16], Liang^[17] et al have successively evaluated and optimized the Cu-Zn system. Cu-Zn phase diagram was reported by Effenberg^[6] which demonstrated five stable compounds β (CuZn), β '(CuZn), γ (Cu₅Zn₈), δ CuZn₃ and ϵ CuZn₅. In 2004, Vassiley^[18] et al according to the research of Cu-Co-Zn ternary system by Xie^[19], found that there is an extensive region of mutual solubility existing between γ -Co₅Zn₂₁ phase and γ -Cu₅Zn₈ phase. However, the phase equilibria information of the Cu-Co-Zn ternary system has still been incompleted. In this study, the phase equilibria information of the Cu-Co-Zn ternary system at 800 °C and 1000 °C will be determined.

1 Experiment

In this work, high purity metals were used: Copper (99.99%), Cobalt (99.99%), Zinc (99.99%). Each Cu-Co-Zn ternary alloy weighed around 20 g was prepared in sealed transparent quartz capsules with an argon atmosphere. To achieve compositional homogeneity, the ingots were remelted at least 4 times and the mass losses were less than 0.5 wt%.

Afterwards, the ternary Cu-Co-Zn alloys were cut into small pieces and resealed in quartz tubes with argon for further annealing treatment. The specimens in the quartz capsules were annealed at 800 and 1000 °C for various durations from several days to almost one month, depending on the alloy composition and annealing temperature. After the end of heat treatment, the specimens were re-quenched into ice water.

After standard metallographic preparation, microstructure observations and chemical analysis of the equilibrium phases were carried out on electron-probe-microanalyzer (EPMA, JXA-8100, JEOL, Japan). High purity metals were used as standard metallographic and the measurements were carried out at a voltage of 20 kV and a current of 1.0×10^{-8} A. The crystal structure analysis was conducted by X-ray diffraction (XRD) on a Philips Panalytical X-pert diffractometer (Cu K α radiation at 40 kV and 40 mA). The data were collected in the range of 2θ from 20° to 100° at a step size of 0.01°. Corresponding XRD evaluations were carried out using the Jade software, version 6.5.

2 Results and Discussion

2.1 Phase equilibrium at 800 and 1000 °C

In the present study, 26 samples with different compositions were prepared in order to determine the phase equilibria at 800 and 1000 °C in the Cu-Co-Zn ternary system. Alloys with different compositions were marked with different numbers for reading convenience. The related equilibrium compositions of the Cu-Co-Zn ternary system at 800 and 1000 °C were summarized in Table 2. Back-scattered electron (BSE) images and X-ray diffraction (XRD) patterns for most of the Cu-Co-Zn ternary specimens are shown in Fig.2 and Fig.3, respectively.

Fig.1 Binary phase diagrams that constitute the Cu-Co-Zn ternary system: (a) Co-Cu^[4] binary system, (b) Co-Zn^[5] binary system, and (c) Cu-Zn^[6] binary system

 Table 1
 Stable solid phases in the three binary systems^[4-6]

Published	Phase	Pearson	Struk-	Space	Ref	
phase label	prototype	symbol	tur-bericht	group		
(aCo)	Cu	cF4	A1	Fm-3m	[5]	
(eCo)	Mg	hP2	A3	P63/mmc	[5]	
(Cu)	Cu	cF4	A1	Fm-3m	[5]	
β (CuZn)	W	cI2	A2	Im-3m	[6]	
$\beta'(CuZn)$	CsCl	cP2	B2	Pm-3m	[6]	
γCu₅Zn ₈	Cu_5Zn_8	cI52	D82	I-43m	[6]	
$\delta CuZn_3$	-	hP3	-	P-6	[6]	
εCuZn₅	Mg	hP2	A3	P63/mmc	[6]	
(Zn)	Mg	hP2	A3	P63/mmc	[6]	
β (CoZn)	W	cI2 or cP2	A2	Im-3m	[7]	
$\beta 1$ (CoZn)	β Mn	cP20	A13	P4132	[7]	
$\gamma(\text{Co}_5\text{Zn}_{21})$	Cu_5Zn_8	cI52	D81-3	I-43m	[7]	
γ(CoZn ₇)	γ-brass related	-	-	Cubic	[7]	
$\gamma(\text{CoZn}_{13})$	CoZn ₁₃	mC28	-	C2/m	[7]	

Table 2	Equilibrium com	position of the (Cu-Co-Zn ternary	system at 800 and 10	000 °C determined	l in the present work
---------	-----------------	-------------------	------------------	----------------------	-------------------	-----------------------

No. <i>T</i> /°C	Alloy(at%)	Annealing time/ d	Phase equilibria	Composition/at%						
			Phase 1/ Phase 2/ Phase 3	Phase 1		Phase 2		Phase 3		
				Cu	Co	Cu	Со	Cu	Co	
1	800	$Cu_{15}Co_{10}Zn_{75}$	1	γ / L	18.7	12.9	4.5	6.5	-	-
2	800	$Cu_{15}Co_{20}Zn_{65}$	20	γ	15.3	21.3	-	-	-	-
3	800	$Cu_{15}Co_{45}Zn_{40}$	20	$(\alpha Co)/\beta$ -CuZn	7.1	63.0	19.0	30.8	-	-
4	800	$Cu_{20}Co_{10}Zn_{70}$	20	β -CuZn	38.6	10.0	-	-	-	-
5	800	$Cu_{24}Co_{20}Zn_{56}$	20	β -CuZn	27.7	22.8	-	-	-	-
6	800	$Cu_{32}Co_{16}Zn_{52}$	20	β -CuZn	32.7	16.1	-	-	-	-
7	800	$Cu_{10}Co_{45}Zn_{45}$	20	$(\alpha Co)/\beta$ 1-CoZn/ β -CuZn	5.0	62.1	5.1	47.6	16.44	32.26
8	800	$Cu_{20}Co_{25}Zn_{55}$	20	β -CuZn	21.5	27.0	-	-	-	-
9	800	$Cu_{70}Co_{13}Zn_{17}$	20	$(\alpha Co)/(Cu)$	7.3	89.9	76.6	3.4	-	-
10	800	$Cu_{20}Co_{40}Zn_{40}$	20	$(\alpha Co)/\beta$ -CuZn	6.3	67.7	31.5	20.4	-	-
11	800	$Cu_{10}Co_{50}Zn_{40}$	20	$(\alpha Co)/\beta$ -CuZn	5.8	60.8	17.5	32.4	-	-
12	800	$Cu_{30}Co_{28}Zn_{42}$	20	$(\alpha Co)/\beta$ -CuZn	6.04	70.3	35.5	17.7	-	-
13	800	Cu25C09Zn66	20	γ	25.2	9.5	-	-	-	-
14	800	$Cu_{15}Co_{30}Zn_{55}$	20	β 1-CoZn/ β -CuZn/ γ	5.3	44.9	18.4	27.7	17.83	19.32
15	800	$Cu_{14}Co_{41}Zn_{45}$	20	$(\alpha Co)/\beta$ -CuZn	6.4	62.1	17.9	32.2	-	-
16	800	$Cu_{29}Co_{28}Zn_{43}$	20	β -CuZn	33.5	18.4	-	-	-	-
17	1000	$Cu_{40}Co_{30}Zn_{30}$	1	(aCo)/L	6.2	82.7	57.0	6.0	-	-
18	800	$Cu_{24}Co_{12}Zn_{64}$	20	γ	23.92	11.9	-	-	-	-
19	800	$Cu_{30}Co_{20}Zn_{50}$	20	β -CuZn	31.7	19.6	-	-	-	-
20	1000	$Cu_{63}Co_{20}Zn_{17}$	7	$(\alpha Co)/(Cu)$	8.2	88.5	72.2	8.9	-	-
21	1000	$Cu_{60}Co_{18}Zn_{22} \\$	1	(aCo)/L	7.2	86.1	3.1	72.3	-	-
22	800	$Cu_{56}Co_{16}Zn_{28}$	20	$(\alpha Co)/(Cu)$	7.52	86.0	63.5	6.4	-	-
23	800	$Cu_{39}Co_{20}Zn_{41}$	20	$(\alpha Co)/\beta$ -CuZn	7.7	78.8	43.8	12.7	-	-
24	800	$Cu_{60}Co_{20}Zn_{20}$	20	$(\alpha Co)/(Cu)$	7.6	87.5	72.8	3.8	-	-
25	1000	$Cu_{10}Co_{47}Zn_{43}$	1	(aCo)/L	4.0	66.0	17.0	26.0	-	-
26	800	Cu ₅₀ Co ₁₅ Zn ₃₅	20	$(\alpha Co)/(Cu)/\beta$ -CuZn	7.2	82.3	55.9	9.5	54.06	6.1

All the mentioned chemical compositions in this work were given in the form of an atomic ratio (at%). All observed phases were identified via two methods: the equilibrium composition measured by EPMA, and the crystal structure analysis by XRD. Most of the identification of equilibrium phases could be confirmed by taking advantage of the available composition ranges and crystal structure information of the intermetallic compounds in the binary and ternary systems.

A BSE image of the alloy $Cu_{10}Co_{45}Zn_{45}$ annealed at 800 °C is presented in Fig.2a, showing three-phase coexistence of β -CuZn (white), β 1-CoZn (gray) and (α Co) (black). The corresponding XRD pattern is shown in Fig.3a. The two results are highly consistent. In the alloy $Cu_{60}Co_{20}Zn_{20}$ annealed at 800 °C, a two-phase equilibrium of (α Co) + (Cu) is found, as shown in Fig.2b. And Fig.2c shows a typical two-phase mi-

crostructure from the annealed alloy $Cu_{20}Co_{40}Zn_{40}$. The EPMA analysis indicates that the dark grey phase is (α Co), while the light grey phase is β -CuZn. Fig.2d shows the BSE image of annealed $Cu_{15}Co_{30}Zn_{55}$ alloy, in which three-phase microstructure of (β 1-CoZn+ β -CuZn+ γ) was identified by EPMA analysis. And the XRD analysis (Fig.3b) was further matched up with them. In addition, Fig.2e and Fig.2f present the BSE images of the alloys $Cu_{40}Co_{30}Zn_{30}$ and $Cu_{63}Co_{20}Zn_{17}$, annealed at 1000 °C for 1 and 7 d, respectively. The EPMA results indicate that these microstructures are composed of (α Co) + Liquid and (α Co) + (Cu).

2.2 Isothermal section at 800 and 1000°C

Based on the above experimental data, the 800 and 1000 °C isothermal section diagram were established. Fig.4 shows the 800 °C isothermal section. In total, three three-phase regions of $[(\alpha Co) + \beta 1-CoZn + \beta-CuZn]$,

 $[\beta 1-CoZn+\beta-CuZn+\gamma]$ and $[(\alpha Co)+(Cu)+\beta-CuZn]$ and one liquid region were experimentally confirmed at 800 °C and they were marked with different symbols. As we can see in Fig.4, the solubility of Co in the β -CuZn phase is measured to be about 32.3 at%. The solubility of Cu in the β 1-CoZn phase is about 5.3 at%. According to the research of Cu-Co-Zn ternary system by Xie^[19], there is an extensive region of mutual solubility existing between y-Co₅Zn₂₁ phase and γ -Cu₅Zn₈ phase. For the validation of the existence of a continuous solid solution between γ -Co₅Zn₂₁ phase and y-Cu₅Zn₈ phase, two different alloys (Cu₁₅Co₂₀Zn₆₅/Cu₂₅Co₉Zn₆₆) in this single-phase region were prepared. Their BSE micrographs show the appearance of a single phase and their compositions determined with EPMA approach the values anticipated for the preparation of alloys.

The γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ have the same crystal structure, and their XRD results are the same as shown in Fig.5a~5b, where the characteristic peaks of the γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ phase are only confirmed and well marked by star symbols. Based on the analyses of EPMA and XRD, an extensive region of mutual solubility existing between

Fig.2 Typical ternary BSE images obtained from Cu-Co-Zn ternary alloys: (a) Cu₁₀Co₄₅Zn₄₅ alloy annealed at 800 °C for 20 d; (b) Cu₆₀Co₂₀Zn₂₀ alloy annealed at 800 °C for 20 d; (c) Cu₂₀Co₄₀Zn₄₀ alloy annealed at 800 °C for 20 d; (d) Cu₁₅Co₃₀Zn₅₅ alloy annealed at 800 °C for 20 d; (e) Cu₄₀Co₃₀Zn₃₀ alloy annealed at 1000 °C for 1 d; (f) Cu₆₃Co₂₀Zn₁₇ alloy annealed at 1000 °C for 7 d

Fig.3 XRD patterns of $Cu_{10}Co_{45}Zn_{45}$ (a) and $Cu_{15}Co_{30}Zn_{55}$ (b) alloy annealed at 800 °C for 20 d

Fig.4 Experimentally determined isothermal section diagram of Cu-Co-Zn ternary system at 800 °C

 γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ was confirmed and labeled as γ . XRD pattern of β -CuZn phase is shown in Fig.5c, where the characteristic peaks of the β -CuZn phase are well confirmed.

Fig.6 shows the isothermal section of Cu-Co-Zn ternary system at 1000 °C. There is only one three-phase region of $[(\alpha Co)+(Cu)+Liquid]$, but this three-phase zone is too small to be determined. As the temperature raised, the liquid-phase region was further expanded.

Fig.5 XRD patterns of partial Cu-Co-Zn ternary alloys annealed at 800 $^\circ$ C for 30 d

Fig.6 Experimentally determined isothermal section diagram of Cu-Co-Zn ternary system at 1000 °C

3 Conclusions

1) The isothermal sections of the Cu-Co-Zn ternary system at 800 $^{\circ}$ C and 1000 $^{\circ}$ C were experimentally in

vestigated. No any ternary compound is found.

2) The solubility of Co in the β -CuZn, and Cu in the β 1-CoZn at 800 °C are 32.4 at% and 5.3 at%, respectively.

3) The γ -Co₅Zn₂₁ and γ -Cu₅Zn₈ have the same crystal structure. Therefore, an extensive region of mutual solubility is observed in the Cu-Co-Zn ternary system.

4) As the temperature rises from 800 $^{\circ}$ C to 1000 $^{\circ}$ C, the liquid-phase region is further expanded.

References

- 1 Wu J, Xue S B, Wang J W et al. Journal of Materials Science: Materials in Electronics[J], 2016, 27(12):12729
- 2 El-Daly A A, Radwan N, Abo El-Eizz H M et al. Journal of Materials Science: Materials in Electronics[J], 2015, 26(11): 8807
- 3 Huang Y C, Chen S W. Co *Journal of Materials Research*[J], 2010, 25: 2430
- 4 Nishizawa T, Ishida K. *Bulletin of Alloy Phase Diagrams*[J], 1984, 5(2): 161
- 5 Okamoto H. Journal of Phase Equilibria & Diffusion[J], 2006, 27(3): 311
- 6 Effenberg G. Landolt-Börnstein-Group IV Physical Chemistry[J], 2006, 11b: 1
- 7 Pattanaik G R, Kashyap S C, Pandya D K. Journal of Magnetism & Magnetic Materials[J], 2000, 219(3): 309
- 8 Kubišta J, Vřešt L J. Journal of Phase Equilibria[J], 2000, 21(2): 125
- 9 Cao C D, Letzig T, Grler G P et al. Journal of Alloys & Compounds[J], 2001, 325(1-2): 113
- 10 Straumal B B, Kogtenkova O A, Straumal A B et al. Journal of Materials Science[J], 2010, 45(16): 4271
- 11 Spencer P J. Calphad-computer Coupling of Phase Diagrams & Thermochemistry[J], 1986, 10(2): 175
- 12 Kowalski M, Spencer P J. Journal of Phase Equilibria[J], 1993, 14(4): 432
- 13 David N, Fiorani J M, Vilasi M et al. Journal of Phase Equilibria[J], 2003, 24(3): 240
- 14 Chen W G S. Journal of Materials Research[J], 2008, 23(1):
 258
- 15 Wang J, Xu H, Shang S et al. Calphad-computer Coupling of Phase Diagrams & Thermochemistry[J], 2011, 35(2): 191
- 16 Du Y, He C Y, Chen H L et al. Metallurgical & Materials Transactions A[J], 2009, 24(10): 3154
- Liang S M, Hsiao H M, Schmid-Fetezer R. Calphad-computer Coupling of Phase Diagrams & Thermochemistry[J], 2015, 51: 224
- 18 Vassiley G P, Jiang M. Journal of Phase Equilibria and Diffusion[J], 2004, 25(3): 259
- 19 Xie W, Miller G J. Cheminform[J], 2014, 45(28): 2624

Co-Cu-Zn 三元系相平衡的实验研究

王翠萍¹, 吴 超¹, 邓育灵¹, 张锦彬¹, 杨木金¹, 杨水源¹, 韩佳甲¹, 卢 勇¹, 刘兴军^{1,2} (1. 厦门大学 材料科学院及福建省材料基因工程重点实验室, 福建 厦门 361005) (2. 哈尔滨工业大学 (深圳) 材料科学与工程学院, 广东 深圳 518055)

摘 要:采用电子探针显微分析和X射线衍射分析方法研究了Co-Cu-Zn三元体系在800和1000 ℃时的相平衡。在这2个等温截面中 均未发现三元化合物。在800 ℃等温截面,Co在β-CuZn相中的固溶度为32.36%,Cu在β1-CoZn相中的固溶度为5.28%。除此之外, γ-Co₅Zn₂₁和γ-Cu₅Zn₈具有相同的晶体结构,因此,它们之间形成了一个贯穿连续固溶体相。1000 ℃的等温截面中,β-CuZn相、 β1-CoZn相、γ-Co₅Zn₂₁相、γ-Cu₅Zn₈相都消失了。随着温度从800 ℃上升到1000 ℃,液相区域增大。 关键词:Co-Cu-Zn三元系;相平衡;电子探针

作者简介: 王翠萍, 女, 1963 年生, 博士, 教授, 厦门大学材料学院及福建省材料基因工程重点实验室, 福建 厦门 361005, 电话: 0592-2180606, E-mail: wangcp@xmu.edu.cn