激光沉积修复单道多层 DZ125 双级时效热处理 组织与性能

卞宏友^{1,2}, 翟星玥¹, 王世杰², 李 英³, 王 伟¹, 王 维¹

(1. 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室,辽宁 沈阳 110136)
(2. 沈阳工业大学 机械工程学院,辽宁 沈阳 110870)
(3. 中国航发沈阳黎明航空发动机有限责任公司焊接技术室,辽宁 沈阳 110043)

摘 要:通过在 DZ125 铸造基体上沿纵向进行激光沉积单道多层实验,分析了 DZ125 沉积态与双级时效热处理试样的 组织和性能。结果表明:沉积态修复区组织从底部到顶部分别为平面晶、柱状晶和等轴晶组织,修复区主要为 *M*C 碳 化物,热影响区因热量的输入,*M*C 分解为 *M*₂₃C₆;与沉积态组织相比,双级时效热处理后,修复区组织形成了新的晶 界,部分 *M*C 碳化物分解为 *M*₆C 与 *M*₂₃C₆, y'相尺寸略有增大,为 600~800 nm,分布均匀;热影响区碳化物尺寸略有 减小,y'相尺寸增大,呈立方体形状;双级时效热处理修复试样在 1000 ℃下的抗拉强度为 516 MPa、屈服强度为 386 MPa,可分别达到铸件的 89.7%和 97.7%,延伸率为 13.6%,达到铸件的 43.9%;热处理后修复试样的平均硬度为 4730 MPa (HV0.3),高于沉积态试样平均硬度 4330 MPa (HV0.3),且热处理态与沉积态试样沿修复区、热影响区到基体硬度呈降 低趋势。

关键词:	激光衍	ī积修复;	DZ125	高温合金;	双级时效热	、处理;	显微组织;	力学性能		
中图法分	关号:	TG146.1	+5	文献标	只码: A		文章编号:	1002-185X(2	2020)09-31	22-07

DZ125 是自主研制的定向凝固镍基高温合金,具有 良好力学性能和持久性能,广泛的应用于航空发动机和 燃气轮机的涡轮叶片上,涡轮叶片等热端部件长期服役 于高温高压和腐蚀性气体环境中,叶尖易出现烧蚀、磨 损等损伤,使叶片失效^[1];激光沉积修复具有热输入量 小、修复热影响区小、变形小等优点;同时超高的温度 梯度可以获得外延定向生长修复组织,利用激光沉积修 复 DZ125 定向凝固合金薄壁零件具有明显的技术优势 和巨大的应用前景^[2,3];激光沉积态组织通常为亚稳态, 快凝的特点使碳化物和强化相来不及析出,而热处理是 优化修复区显微组织的重要手段,可以有效地降低修复 残余应力,提高力学性能^[4]。

杨海鸥^[5]在研究热处理对激光立体成形 DZ125 高温 合金组织的影响中表明,经1180 ℃,2h,AC+1000 ℃, 12h,AC 热处理后,y'相颗粒形状不规则,且部分 MC₍₁₎ 碳化物转变为 M₂₃C₆或 M₆C 型碳化物;夏鹏成^[6]在高温时 效定向凝固 DZ951 镍基高温合金中发现,1130 ℃高温时 效过程中,碳化物由骨架状变成块状,于晶界中不连续分 布,y'部分固溶,在随后的冷却过程中析出细小球形y'相; 王哲^[7]在固溶热处理 DD6 高温合金中表明 1310 ℃固溶 处理并两次时效处理后, DD6 合金的高温拉伸性能好于 1300 ℃固溶处理和时效处理的 DD6 合金; 卞宏友^[8]在激 光沉积修复 GH4169 合金试样直接时效热处理后,试样显 微组织与沉积态基本一致,热处理后试样的高温抗拉强度 和屈服强度增高,断后伸长率略有下降。

针对薄壁零件边缘损伤的修复需求,本研究开展激光 沉积修复 DZ125 单道多层实验,观察分析单道多层修复 试样显微组织的特点,揭示沉积态和双级时效热处理制度 下热影响区与修复区的显微组织和性能的变化规律。

1 实 验

试验所用的激光沉积修复设备为LDM800系统,试 样基板经时效热处理,尺寸为40 mm×25 mm×2 mm的 DZ125高温合金,化学成分如表1所示,修复材料为新型 镍基合金粉末,化学成分如表2所示;为保证沉积层与基 体间结合良好且无裂纹等明显组织缺陷,优化选取的激 光沉积DZ125单道多层试验工艺参数为:激光功率400 W, 扫描速度1 mm/s,送粉速率0.1 r/min。

收稿日期: 2019-08-05

基金项目: 辽宁省自然科学基金 (20170540690); 国家重点研发计划 (2017YFB1104002)

作者简介: 卞宏友, 男, 1975年生, 博士, 教授, 沈阳工业大学机械工程学院, 辽宁 沈阳 110870, E-mail: bhy@sia.cn

采用 SGM.VB30/12G 型箱式电阻炉在充氩条件下 对修复试样进行标准双级时效热处理试验,热处理制度 为1100 ℃,4 h, AC+870 ℃, 20 h, AC;激光沉积修复 后,使用线切割沿垂直晶粒生长方向进行切割,制备金 相,腐蚀液为 HCl(20 mL)+CuSO₄(5 g)+H₂O(100 mL), 腐蚀 20 s;采用 OLYMPUS-GX51 型光学显微镜、 ZEISS-SIGMA 扫描电镜(EDS)和 HVS-50 显微硬度计进 行金相试样显微组织的观察及硬度的测试分析;采用线 切割和磨削的方式将热处理后的修复试样加工成拉伸试 样,尺寸如图 1 所示,进行高温拉伸性能测试。

2 结果与讨论

2.1 激光沉积修复 DZ125 合金的组织特征

2.1.1 沉积态显微组织

图 2 为激光沉积修复单道多层 DZ125 修复试样,图 3 为 DZ125 镍基高温合金修复区和基体光镜下显微组织。

图3a为修复区光镜下的组织,随着沉积层数增多, 底部到顶部的一次枝晶间距无明显变化,说明基材与修 复区随着温度的升高吸放热达到基本平衡;图3d显示出 修复区与基材的交界处有一层白色界面,表明基体与修 复区之间的融合良好,在激光沉积初始时,基体与修复 区结合面的温度梯度G很大,而凝固速率R很小,导致 G/R趋于无穷大,故结晶晶粒从基体以平面晶方式外延 生长: 激光沉积是快热快冷且逐层堆积过程, 由图3c可 以看出沉积层之间出现层带,由于凝固速率的增大,修 复区内主要由自平面晶开始外延定向凝固生长的y柱状 枝晶组成,无明显的二次臂生长, y相晶体为面心立方结 构,立方系金属{100}晶面原子排列不紧密、面配位数小, 液固界面粗糙并连续生长,因此立方晶系晶体在与{100} 面垂直的<100>方向上长大速度最快,故y相枝晶在凝固 过程中将选择与最大热流方向最接近的取向外延生 长^[9]。由图3c可以看出修复区边缘晶粒较中间更粗大, 这是因为扫描速率的变化对热输出有影响,进而影响晶 粒的生长速度;研究表明,结晶形态与温度梯度G和凝 固速率R的比值有关,晶粒组织随着比值降低变得细小, 由关系式G/R∝1/v可以看出,随扫描速率v逐渐增大, G/R比值减小,所以沉积每一层的起始端,扫描速率较 慢,使柱状晶组织较粗大^[10]。图3b显示了在顶部区域存 着取向杂乱等轴晶组织,这是因为熔池顶部散热快,凝 固速率大,导致液相存在较大的成分过冷区,晶粒可自 由形核生长,因而形成无规则分布的等轴晶^[11]。图3e为 DZ125铸造基体的微观组织图,可以看出晶粒较大,存 在y固溶体,且含有Al, Ti, Ta等多种强化元素,凝固时 有大量y'析出,相对于基体,热影响区的析出物较少, 这是因为激光沉积是快热快冷过程, y'相回溶后大部分 来不及析出导致热影响区的析出物较少。

表1 DZ125 合金的化学成分

Table 1 Chemical composition of DZ125 alloy (ω/ψ_0)										
С	Cr	Co	Мо	W	Al	Ti	Та	Hf	В	Ni
0.07~0.12	8.4~9.4	9.5~10.5	1.5~2.5	6.5~7.5	4.8~5.4	0.7~1.2	3.5~4.1	1.2~1.8	0.01~0.02	Bal.

	表 2	粉末的化学成分	
1. 3	Ch		

Table 2Chemical composition of alloy powder (ω /%)									
Cr	Co	Мо	W	Al	Ti	Та	Hf	Ni	
4.0~15.0	3.0~13.0	1.0~2.0	3.0~11.0	2.0~5.0	0.5~2.5	1.8~6.1	0.5~1.0	Bal.	

图 1 高温拉伸性能测试试样尺寸示意图 Fig.1 Schematic of high temperature tensile test specimen size

图 2 激光沉积修复 DZ125 修复件 Fig.2 Laser deposition repaired DZ125 repair parts

图 3 基体与修复区宏观形貌

Fig.3 Macroscopic appearance of matrix and repair area (a), OM image of macroscopic appearance (b), top of repair area (c), edge of repair area (d), and base and repair area junction of matrix (e)

2.1.2 碳化物分布

图 4 显示沉积态修复区、热影响区和基体的碳化物 形态和大小。图 4a 表明顶部碳化物分布杂乱无章,尺 寸为 1~2 μm,呈细小圆块状。由图 4b 可以看出修复区 底部碳化物呈线性分布,形貌呈块状,多富集于晶界, 尺寸约为 2 μm,修复区均为初生 MC 碳化物,成分如 表 3 所示。由于激光沉积是快速加热快速凝固过程, 修复区中碳化物的生长空间较小,不能有充分时间生 长,所以修复区碳化物体积较小,而图 4f 所示出现的 个别体积较大的块状碳化物,尺寸约为 5 μm,是因为 激光沉积修复过程中熔池内部存在少量的有序原子 簇,凝固时易发生偏析,促使碳化物快速析出^[12]。图 4d 表明基体内存在着尺寸较大的人字形碳化物,基体 为铸造,故碳化物的尺寸较大,在10~20 μm之间。图 4c 中热影响区碳化物呈块状和短棒状,尺寸为 5~10 μm,较基体尺寸明显减小,由表 3 EDS 的结果可知 Cr 含量较高,故热影响区中析出的碳化物为 M₂₃C₆,这是 因为热影响区碳化物因受多次热循环影响,使块状的 *M*C 分解为尺寸较小的 M₂₃C₆。

2.1.3 y'分布

y'是 DZ125 合金中最主要的强化相,含量和尺寸 对合金的性能有着重要的影响。图 5 为 DZ125 高温合 金修复区、热影响区和基材的 y'相微观组织照片。图 5a、5b分别为修复区的 y'相和 y'相的放大图,可以看出 枝晶间分布着形状不规则的 y'相, 个别较粗大的 y'相呈 立方块状,尺寸约为 500 nm,细小的 y'相呈椭球状, 尺寸小于 200 nm; y'相的主要形成元素为 Ti, 在激光沉 积过程中易偏析于枝晶间,使枝晶间,/相的浓度高于晶 界,导致冷却过程中枝晶间 y'相先析出,易使晶界处 y' 相较晶内更粗大,而激光沉积修复具有快速熔化快速凝 固的特点,故与铸造基体比较晶粒更为细致。图 5d 为 基体 y'相,图中为黑色,呈立方体块状凸出在 y基体上, 大小不均且有粘连现象,较小的约为 300 nm,较大的 达到 2 µm; 图 5c 可以看出热影响区 y'相较基体比形状 更为规则,呈立方块状,尺寸约为 500 nm,这是由于 激光沉积修复过程中,部分 y'相会发生回溶,冷却后析 出规则的 y'相,同时释放的 y'相促进原来 y'相更加规整, 导致热影响区晶粒呈现均匀的立方体状。

图 4 沉积态碳化物形貌

Fig.4 Sedimentary carbide morphology: (a) top of repair area, (b) bottom of the repair area, (c) heat affected zone, (d) matrix, (e) carburization at the top of the repair area, and (f) carbide enlargement at the bottom of the repair area

Table 3Energy spectrum analysis of different regions of DZ125 (ω /%)										
Element	С	Al	Ti	Cr	Co	Ni	Мо	Hf	Та	W
МС	19.47	1.64	37.43	2.59	2.13	15.96	2.98	6.36	5.74	5.69
$M_{23}C_6$	6.38	2.78	1.16	9.40	2.82	62.7	4.46	1.05	4.41	4.84

表 3 DZ125 不同区域能谱分析

图 5 沉积态 y'形貌 Fig.5 Sedimentary y' morphologies: (a, b) repair area, (c) heat affected zone, and (d) matrix

2.2 标准双级时效热处理后显微组织

2.2.1 碳化物分布

经1100 ℃,4 h,AC+870 ℃,20 h,AC双级时效热 处理后组织如图6a所示,对应修复区碳化物能谱如表4。 可以看出与沉积态比较,修复区柱状枝晶形成新的更明 显的晶界,这是因为高温下晶界会发生扩展,合并,导 致新晶界形成。

由图6b可知,在双级时效热处理过程中,修复区晶 内有块状碳化物析出,大小1~2µm,与沉积态相比,在 1100 ℃下MC型碳化物不稳定,部分发生固态相变转化 成二次碳化物,分解为富含W的M₆C型碳化物和富含Cr 的M₂₃C₆型碳化物^[5],其中M₆C型碳化物为面心立方结 构,易在晶界形核从而阻碍晶界滑移,提高合金力学性 能;修复区还存在剩余MC碳化物,说明并没有完全转化 为二次碳化物,而Ta含量降低,这是因为y'相沉淀相析 出长大,溶解的Ta形成y'相沉淀相,导致时效处理后MC 型碳化物Ta的含量稍有降低。

图 6c 为热影响区碳化物,尺寸为 4 μm,与沉积态 的热影响区碳化物比偏小,这也是因为高温下碳化物不 稳定,多次热循环作用下易分解成小块状;图 6d 为基 体碳化物,呈圆块状,较大碳化物尺寸约为 10 μm,周 围分布较小块状碳化物,尺寸为 1~2 μm,经热处理后 部分碳化物逐渐分解,剩余碳化物随着热处理的进行逐 渐长大。

2.2.2 y'分布

图7为双级时效热处理后的y'相形貌,图7a为修复区的y'相形貌,仍为立方体形状,尺寸较均匀为600~800 nm,与沉积态y'相比尺寸偏大。在1100 ℃保温4 h过程中,部分y'固溶于基体,并在随后的冷却过程中析出细小球形y'相,且y'相有一定的生长驱动力,原子的扩散速率也较大,使y'相不断长大^[6]。后续二级时效 (870 ℃,20 h),时效温度较低,在保温过程中,y'相缓慢长大,y'相与基体

图6 热处理后碳化物形貌

Fig.6 Carbide morphology after heat treatment: (a) repair area, (b) repair zone, (c) heat affected zone, and (d) matrix

		Table 4 E	Energy spectru	m analysis o	f carbides in	different area	as of DZ125	repair area (a	v/%)	
Element	С	Al	Ti	Cr	Со	Ni	Mo	Hf	Та	W
M_6C	15.81	2.01	3.80	3.63	4.50	27.55	4.66	4.71	22.13	11.20
$M_{23}C_{6}$	6.21	1.67	1.08	9.60	6.21	58.48	4.89	1.69	4.53	5.64
MC	31.45	1.78	12.23	4.13	1.95	23.31	1.98	12.40	2.56	8.21

表 4 DZ125 修复区不同区域碳化物能谱分析

图 7 热处理后的 y'相形貌

Fig.7 Morphologies of γ' phase after heat treatment: (a) repair area, (b) heat affected zone, and (c) matrix

保持共格关系,弹性应变能较小,而y'相的形貌主要取 决于应变能,故y'相为立方形时应变能最小,能够稳定 存在,所以y'相为立方形排列且更加规则均匀分布^[13]。由 图7b可以看出热影响区y'相尺寸仍为600~800 nm,与沉积 态热影响区y'相比尺寸增大,仍呈立方体形状,经长期时 效热处理后,较小的y'相逐渐溶解,同时释放y'相形成元 素促进未溶解y'相缓慢长大^[14]。图7c为基体y'相形貌,尺 寸约为1 µm,呈立方体形状,基体为铸造,所以y'相尺寸 比修复区尺寸大,形状更加规则。

2.3 热处理后的高温拉伸性能

表5为激光沉积修复DZ125高温合金热处理后1000 ℃时的高温拉伸性能测试结果,在相同条件及工艺参数 下修复3个试样,对其进行高温拉伸试验。由表5可以得 出,高温拉伸试样的抗拉强度在486~516 MPa之间,屈 服强度在364~386 MPa之间,最高可达到铸件标准的 89.7%和97.7%,断后伸长率可达到铸件的43.8%,高温 拉伸断口位于结合区偏修复区一侧。

激光沉积修复因快速升温和降温的特点,使修复区的温度梯度较高,产生残余应力,导致修复区强化相γ' 相偏析严重。当试样经过双级时效热处理后,修复区以 残余应力为驱动力,析出大量的次生γ'相,γ'相尺寸较小, 位错会切割γ'相,使界面能升高,产生反相畴界能,γ' 相表现为图7a中部分的边角部位没有连接。同时由图7a 中可以看出,修复区内部存在少量的再结晶,再结晶晶 粒为胞状晶组织,再结晶使周围的γ'相分布不均,导致 修复区的高温性能较低^[15]。而基体为铸造,经二次热处 理,随着时效时间的增多,y'相形状更加规则,在图7c 中表现为尺寸较大且连接在一起。由于y'相尺寸较大, 位错在外力的作用下环绕y'相并产生弯曲,增加晶格畸 变能即位错运动的阻力,而位错绕过 *x*'相需要的能量大 于切割y'相的能量,导致位错运动的阻力增大,使位错 运动更加困难^[16],故修复区的高温拉伸性能低于基体。

2.4 不同区域显微硬度分布

图 8 为沉积态和双级时效热处理态试样不同区域 的显微硬度。可以看出沉积态与热处理态修复试样从 修复区沿热影响区到基体硬度呈降低趋势,其中双级 时效的平均硬度为 4730 MPa,沉积态的平均硬度为 4330 MPa。经过双级时效后整体的显微硬度明显高于 沉积态硬度。

激光沉积修复过程中热输入使热影响区的碳化物尺 寸减小,数量增多,分布更均匀,而碳化物是脆性相, 含有Cr,W和C等硬质点元素,随着含量的增加提升硬 度,因此热影响区硬度高于基体。修复区与基体相比, 组织更为细密,晶粒更细小,MC碳化物大量析出于晶界, 故修复区硬度略高于基体。经双级时效热处理后,过饱 和固溶于基体中的y'相形成元素逐渐从基体中析出,使y' 相含量增加,尺寸更适宜,正方度排列更加规则,同时 碳化物也从基体中大量析出,使组织更均匀,而y'相与 碳化物含量的增加使硬度提高,因此热处理后硬度高于 沉积态。

Table 5 Tensile properties of laser deposition repaired DZ125 superalloy at 1000 °C high temperature									
Sample	$\sigma_{ m b}/{ m MPa}$	$\sigma_{0.2}/\mathrm{MPa}$	δ /%						
1#	516	386	13.6						
2#	494	372	13.3						
3#	486	364	13.1						
Casting standard	575	395	31.0						

表 5 激光沉积修复 DZ125 高温合金 1000 ℃高温拉伸性能

Fig.8 Microhardness curves of samples two-stage aging and as-deposited

3 结 论

1) DZ125 高温合金沉积态修复区从底部到顶部的 组织分别为平面晶、柱状晶和等轴晶;修复区主要为 *M*C 碳化物,热影响区 *M*C 碳化物会分解为 *M*₂₃C₆;修 复区 y'相晶界比晶内更粗大,晶粒比基体更细小,形状 均匀。

2) 经过双级时效后修复区部分 MC 碳化物分解 为 M₆C 和 M₂₃C₆, y'相尺寸增大,呈立方形排列且均 匀分布;热影响区碳化物尺寸减小, y'相尺寸仍然增 大,形貌呈立方体。

3) 激光沉积修复 DZ125 高温合金经过双级时效 热处理后,在 1000 ℃时的抗拉强度可达到铸件的 89.7%,屈服强度达到铸件的 97.7%,断后伸长率可达 到铸件的 43.8%。

4) 沉积态和双级时效热处理修复试样从修复区 沿热影响区到基体硬度呈降低趋势,且双级时效热处 理后的平均硬度为 4730 MPa (HV0.3),沉积态修复试 样平均硬度为 4330 MPa (HV0.3)。

参考文献 References

 [1] ZhangYawei(张亚玮), Zhang Shuquan(张述泉), Wang Huaming(王华明). Rare Metal Materials and Engineering(稀有金 属材料与工程) [J], 2008, 37(1): 169

- [2] Hu Bin(胡 滨), Hu Fangyou(胡芳友), Guan Renguo(管仁国) et al. The Chinese Journal of Nonferrous Metals(中国有色金 属学报)[J], 2013, 23(7): 1969
- [3] Huang Weidong(黄卫东), Li Yanmin(李延民), Feng Liping (冯莉萍) et al. Journal of Materials Engineering(材料工程)[J], 2002, 3(10): 40
- [4] Xie J, Tian S G, Zhou X M et al. Materials Science & Engineering A[J], 2011, 528(4-5): 2076
- [5] Yang Haiou(杨海欧), Han Jiajun(韩加军), Lin Xin(林 鑫) et al. Chinese Journal of Lasers(中国激光)[J], 2018, 45(11): 52
- [6] Xia Pengcheng(夏鹏成), Yu Jinjiang(于金江), Sun Xiaofeng(孙晓峰) et al. Rare Metal Materials and Engineering(稀 有金属材料与工程)[J], 2010, 39(1): 69
- [7] Wang Zhe(王 哲), Liu Yong(刘 永), Wang Man(王 蔓) et al.
 Hot Working Technology(热加工工艺)[J], 2017, 46(24): 217, 223
- [8] Bian Hongyou(卞宏友), Zhao Xiangpeng(赵翔鹏), Qu Shen (曲 伸) et al. Chinese Journal of Lasers(中国激光)[J], 2016, 43(1): 93
- [9] Li J, Wang H M. Materials Science and Engineering A[J], 527(18-19): 4823
- [10] Ren Xinche(任心澈). Thesis for Master Degree(硕士论文)[D]. Nanchang: Nanchang Hangkong University, 2016
- [11] Han Jiajun(韩加军), Lin Xin(林 鑫), Yang Haiou(杨海欧) et al. Foundry Technology(铸造技术)[J], 2014, 35(10): 2320
- [12] Yin Fengshi(殷风仕), Sun Xiaofeng(孙晓峰), Hou Gunchen (侯贵臣) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2004, 33(6): 659
- [13] Pu Yifan(浦一凡). Thesis for Master Degree(硕士论文)[D].
 Shenyang: Shenyang University of Technology, 2017
- [14] Bian Hongyou(卞宏友), Zhai Quanxing(翟泉星), Qu Shen (曲伸) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2019, 48(1): 317
- [15] Liu Feng(刘峰), Zhang Chongyuan(张重远), Wang Jingli (王景丽) et al. Hot Working Technology(热加工工艺)[J], 2019(16):153
- [16] Song Kan(宋 衎), Yu Kai(喻 凯), Lin Xin(林 鑫) et al. Acta Metallurgica Sinica (金属学报)[J], 2015, 51(8): 935

Microstructure and Properties of Two-stage Aging Heat Treated Single Multilayer DZ125 After Laser Deposition Repair

Bian Hongyou^{1,2}, Zhai Xingyue¹, Wang Shijie², Li Ying³, Wang Wei¹, Wang Wei¹

(1. Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China)

(2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China)

(3. Welding Technology Room, AECC Shenyang Liming Aero Engine Co., Ltd, Shenyang 110043, China)

Abstract: The microstructure and properties of DZ125 samples (as-deposited and two-stage aging heat treated) were analyzed by laser deposition single multi-layer experiments on the casting substrate along the longitudinal direction of DZ125. The results show that the microstructure of the sedimentary repair area is planar crystal, columnar crystal and equiaxed crystal structure from the bottom to the top. The repaired area is mainly *M*C carbide. The heat affected zone will be decomposed into $M_{23}C_6$ by *M*C due to the input of heat. Compared with the as-deposited microstructure, after the two-stage aging heat treatment, a new grain boundary is formed in the repaired area, and some *M*C carbides are decomposed into $M_{6}C$ and $M_{23}C_6$, and the γ phase size is slightly increased, about 600~800 nm, and the distribution is uniform. The size of the carbides in the heat-affected area is slightly reduced, the size of the γ phase is increased, and it is cubic. The tensile strength of the two-stage aging heat treatment specimen is 516 MPa at 1000 °C, and the yield strength is 386 MPa, which is 89.7% and 97.7% of that of the casting, respectively. The elongation rate is 13.6%, reaching 43.9% of that of the casting; the average hardness of the repaired sample after heat treatment is 4730 MPa (HV0.3), which is higher than the average hardness of the as-deposited sample 4330 MPa (HV0.3). The hardness of the heat-treated and the deposited samples along the repair zone and the heat-affected areas to the matrix tends to be decreased. **Key word:** laser deposition repair; DZ125 superalloy; two-stage aging heat treatment; microstructure; mechanical property

Corresponding author: Bian Hongyou, Ph. D., Professor, School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China, Tel: 0086-24-89723852, E-mail: bianhongyou@sau.edu.cn