Mn-20Ga 纳米复合磁性材料的制备和磁性能研究

张林¹,陈梦龙^{1,2},高玉龙²,赵晨希²,魏浩宇²,梁宁²,王恩刚¹

(1. 东北大学 材料电磁过程研究教育部重点实验室, 辽宁 沈阳 110819)

(2. 东北大学 冶金学院, 辽宁 沈阳 110819)

摘 要: Mn-Ga 合金具有高矫顽力和较高的磁晶各向异性,是一类具有较大发展前景的磁性材料。采用机械合金化方法 制备 Mn-20Ga (at%,下同)纳米磁性复合材料,复合材料在 300~415 ℃,2~8 h进行退火。重点研究了磁性相种类、纳 米晶尺寸和磁性能随退火条件的变化规律。研究发现,未退火的 Mn-20Ga 合金主要组成相为纯 Mn 与纯 Ga,退火后 Mn-20Ga 合金的主要磁性相为纳米级尺寸的 Mn₃Ga 相和 Mn_{0.85}Ga_{0.15} 相,另含有少量氧化导致的 MnO₂相。适当地提高 退火温度,可促进剩磁、矫顽力与磁能积的提高,延长退火时间也有利于剩磁和磁能积的提高。在 385 ℃时进行 6 h 的 热处理,可获得最佳的磁性能: 剩磁 63.21 kA/m、矫顽力 648 kA/m、磁能积 1.2 kJ/m³。适当提高保温温度和/或延长保 温时间,可使 Mn_{0.85}Ga_{0.15} 相的尺寸减小,并与矫顽力升高的趋势相一致。Mn_{0.85}Ga_{0.15} 相晶粒尺寸的减小有利于提高合金 的磁性能。

关键词: Mn-Ga; 纳米磁性材	料; 高能球磨;	退火;	磁性能		
中图法分类号: TG132.2 ⁺ 72;	TG145	文献杨	示识码: A	文章编号:	1002-185X(2022)01-0315-06

当前工业上采用的稀土永磁材料存在力学性能上的 缺点^[1],如 Nd₂Fe₁₄B 或 SmCo₅等脆性大,受冲击时易出 现损伤^[2],因而限制了其在高速电机上的应用。而且, 稀土永磁材料的制备需要大量的稀土元素,稀土的开采 会对自然环境造成污染^[3]。另一类主要的永磁材料为贵 金属基磁性材料:如 FePt,FePd 和 CoPt,多制成磁性 薄膜^[4],很少制成块体材料。贵金属价格高昂,制备工 艺复杂,因此应用极少。从资源环境、节约成本等方面 考虑,开发环境友好的新型永磁材料,对于永磁材料在 未来的发展与品种替代具有重要的意义。在不含稀土与 贵金属的磁性材料中,Mn-Ga 合金具有高矫顽力和较高 的磁晶各向异性^[5],是一类具有较大发展前景的磁性材 料,在存储器、逻辑元件和射频设备等器件中获得了广 泛的应用。

Mn-Ga 合金可以通过熔体快淬制备^[6], Mn₇₀Ga₃₀ 快淬 条带具有 D0₂₂-Mn₃Ga 相, 矫顽力可达 456 kA/m。 Mn_{71.9}Ga_{28.1} 快淬条带在 450 ℃经过 7 d 的长期保温后, 矫 顽力可增至 648 kA/m^[7],表明长时间的退火有利于矫顽 力的提升。制成薄膜的 Mn-Ga 合金可获得更高的矫顽力, 磁 控 溅射 所制成的 Mn-Ga 薄膜矫顽力一般小于 800 kA/m^[8-10],分子束外延法制成的 Mn_xGa(x=2~3)薄膜矫 顽力可达 2000 kA/m,而纳米结构的 Mn_{1.5}Ga 分子束外延 薄膜矫顽力甚至可达 3424 kA/m^[11],这也表明了 Mn-Ga 系磁性材料的磁性能具有较大的提升潜力。但熔体快淬 法、磁控溅射与分子束外延法均不能制成块体磁性材料。

高能球磨的机械合金化过程是制备纳米级晶粒的有 效方法,烧结后可制成块体的磁性材料,可用于 Ni₅₀Mn₄₃Sn₇^[12],Sm-Co^[13],Nd₁₅Fe₇₇B₈^[14],Fe-Si-Al^[15] 等多种磁性材料的制备。与Mn-Ga 系相类似的Mn-Bi 系 磁性材料在球磨与热处理后,矫顽力可达 960 kA/m^[16]。 通过熔炼与热处理制成的Mn-Ga 合金,需要通过碾碎与 球磨,才能获得较高的矫顽力^[17-19],球磨后的Mn₅₆Ga₄₄ 合金在 600 ℃热处理后可获得 496 kA/m 的矫顽力^[20]。 20 h 球磨所制备的Mn₅₆Ga₄₂ 合金得到了 536 kA/m 的矫 顽力^[21]。将熔炼凝固的Mn-Ga 合金锭制成粉末后,可将 矫顽力提高 20 倍^[22]。晶粒细化提高了Mn-Ga 金属间化 合物的结晶度与化学排序,粉末颗粒的尺寸越小,矫顽 力越高。在Mn-Ga 合金的制备过程中,可以通过添加 Bi,Al,Fe 等元素^[23]或 FeCrCo 合金粉末^[24]增加复合材 料的剩磁,并提高其磁能积,但一般会造成矫顽力的少

收稿日期: 2021-01-21

基金项目:国家自然科学基金(51674083);国家级大学生创新创业训练计划(201910145258);中央高校基本科研业务专项资金(N182410001);高等学校学科创新引智计划项目 2.0 (BP0719037)

作者简介: 张 林, 男, 1979 年生, 博士, 特聘研究员, 东北大学材料电磁过程研究教育部重点实验室, 辽宁 沈阳 110819, 电话: 024-83683985, E-mail: zhanglin@epm.neu.edu.cn

量下降。

本研究采用高能球磨方法进行 Mn-Ga 纳米磁性材料的机械合金化制备,并研究了退火温度与时间对 Mn-Ga 合金的组织与磁性能的影响规律,揭示了 Mn-Ga 纳米磁性材料中不同纳米相的尺寸对复合材料整体磁性能的影响,为 Mn-Ga 系磁性材料的工艺开发提供参考。

1 实 验

通过高能球磨的方法进行 Mn-20Ga 纳米磁性复合 材料的机械合金化制备。采用纯度 99.5%的 Mn 粉与纯 度 99.99%的 Ga 粉,把按要求比例配好的 Mn 粉与 Ga 粉混合均匀后放入硬质合金球磨罐,按照球料比 10:1 进 行球磨,将球磨罐进行多次抽真空和通入氩气保护。球 磨过程中加入乙醇作为分散剂。球磨采用 QM-3C 高能 球磨机进行,采用 Φ6 mm 不锈钢磨球,转速 1200 r/min。 球磨进行 3.5 h 后,将粉末置入内径 10 mm 的模具中, 在 1 GPa 压强下制成 Φ10 mm×30 mm 的试样。把试样置 入石英坩埚抽真空密封,然后放入管式加热炉,在不同 的温度(300,325,355,370,385,400,415 ℃)与不同 的时间(2,4,5,6,7,8h)下进行退火。

采用 Zeiss Ultra Plus 场发射扫描电镜(FESEM)观察 试样的微观组织,采用电镜内置能谱仪(EDS)对组织中 的成分进行分析。采用 Philips X'Pert pro 型 X 射线衍射 分析仪(XRD)进行相结构分析。磁性能通过 Lakeshore 7407 振动样品磁强计(VSM)在室温下进行测试。

2 结果与讨论

2.1 Mn-Ga 合金的组织结构分析

不同退火温度下 Mn-Ga 合金的 X 射线衍射分析结 果(图 1a)表明,未退火的 MnGa 合金主要组成相为纯 Mn 与纯 Ga, 以及少量 MnO。在 300 ℃的退火试样中 MnO₂开始出现,并且 MnO₂的衍射峰强度随着退火温度 的提高而升高,说明温度提高促进了部分 Mn 元素的氧 化。MnGa 复合材料退火后,出现了2种主要的金属间 化合物: Mn₃Ga 与 Mn_{0.85}Ga_{0.15}(图 1), Mn_{0.85}Ga_{0.15}相为 立方结构,空间群为 $P4_132$,以高温 β -Mn 为相原型^[25]。 在 300 ℃退火 4 h 后, 20=43 处的纯 Mn 相主峰仍存在, 叠加在 Mn₃Ga 与 Mn_{0.85}Ga_{0.15} 的峰附近(图 1a)。在退火温 度进一步提高至 385 ℃以上后,纯 Mn 相的峰消失, Mn₃Ga 与 Mn_{0.85}Ga_{0.15} 相的峰值升高, Mn₃Ga 为主要相。 在 385 ℃下退火不同时间的试样的 XRD 分析结果表明 (图1b), 退火2h的试样中仍有较多的纯Mn相与Mn₃Ga、 Mn085Ga015 相共同存在。而当退火时间增加到 4 h,纯 Mn 相消失, Mn₃Ga、Mn_{0.85}Ga_{0.15}相的比例升高。在退火 时间进一步增加至 6~8 h 后, Mn₃Ga 与 Mn₀₈₅Ga₀₁₅ 的

图 1 不同退火条件下 Mn-20Ga 合金的 XRD 图谱

Fig.1 XRD patterns of the Mn-20Ga magnetic composites under various annealing conditions: (a) unannealed, annealed at 300, 385 and 415 °C for 4 h and (b) annealed at 385 °C for 2, 4, 6 and 8 h

峰形态变化较小, Mn_{0.85}Ga_{0.15} 相的峰值相对于 Mn₃Ga 的峰值稍有降低。

图2为不同退火条件下Mn-20Ga 合金微观组织的背 散射电子像和 EDS 成分分析结果。可以看出,微观组织 中浅色区域 Ga 含量较高,深色区域 Ga 含量较低,二者 在各种退火条件下的组织中均存在。在未退火的试样中 可观察到明显的不规则的浅灰色颗粒,被颜色较深的区 域所包围,二者间的分界很清晰(图 2a)。由 XRD 分析结 果可知,此时 Mn 与 Ga 仍为纯金属,没有生成二者间 的化合物。Ga 在球磨过程中为液态,粘度较大,因此含 Ga 较多的粉末团可能形成较大的颗粒,而含 Ga 较少的 粉末聚成的颗粒较小,分布在大颗粒的间隙。

在退火之后,随着退火温度的上升,和退火时间的延长,浅色大颗粒区与深色的颗粒间隙区的边界变得模糊(图 2),表明 2 种区域间发生了扩散和相变。由 XRD 结果可知,此时 Mn-Ga 合金中生成了 2 种金属间化合物: Mn₃Ga 相与 Mn_{0.85}Ga_{0.15} 相(β-Mn)。通过 EDS 结果分析 2 种不同区域中的 Mn 与 Ga 的含量比例(图 2b~2d),可知在退火试样中浅色的大颗粒为 Mn₃Ga 相,而深色的间隙区域为 Mn_{0.85}Ga_{0.15} 相。Mn-Ga 合金在退火后,成为铁磁

图 2 不同退火条件下 Mn-20Ga 合金的扫描电镜背散射电子像及 EDS 分析结果

Fig.2 SEM-BSE images and EDS results of marking points for the Mn-20Ga magnetic composites under various annealing conditions: (a) unannealed; (b) 300 °C/4 h; (c) 385 °C/4 h; (d) 385 °C/8 h

性 Mn_{0.85}Ga_{0.15} 相和亚铁磁性 Mn₃Ga 相所组成的复合磁 性材料。与未退火的 2 种区域的成分对比,可知在球磨 后高 Ga 含量的区域趋向于在退火后成为 Mn₃Ga 相,而 低 Ga 含量的区域趋向于在退火后成为 Mn_{0.85}Ga_{0.15} 相。 但 2 种相的生成过程也伴随着高、低 Ga 含量 2 种区域 之间的扩散与转变,有利于大块区域的分解。随着退火 温度的上升,和退火时间的延长,在 385 ℃退火 8 h 后, 2 种相的分布更加均匀弥散(图 2d)。

2.2 Mn-Ga 合金的磁性能分析

退火温度可影响 Mn-20Ga 合金的磁性能。不同退火 温度下的磁滞回线形状对比(图 3a)表明:在 370 ℃以下, 随着退火温度的上升,磁滞回线的面积逐步增大,回线 的端部逐步提升,表明饱和磁化强度和剩磁均升高;而在 385 ℃以上,随着退火温度的上升,回线的端部稍有下降,饱和磁化强度和剩磁相应下降。剩磁在 300 ℃时为 11.61 kA/m,在保温温度 370~385 ℃时升至最高值约61.3 kA/m,在保温温度 415 ℃时降至 45.4 kA/m(图 3b)。在较低的温度区间,矫顽力随保温温度的上升而显著上升,保温温度为 300 ℃时 Mn-Ga 合金的矫顽力为307 kA/m,在 355 ℃时矫顽力升至 570 kA/m;在 355 ℃ 以上,矫顽力随温度的变化幅度降低,在 385 ℃时达到最高值 626 kA/m(图 3b)。通过磁滞回线的数据计算得到不同退火温度下 Mn-20Ga 合金的磁能积(*BH*)_{max},磁能积先随着保温温度的上升而上升,在 385 ℃时达到最大值

Fig.3 Magnetic properties of the Mn-20Ga composites at various annealing temperatures: (a) hysteresis loops, (b) remanence and coercivity, and (c) energy product (*BH*)_{max}

0.88 kJ/m³,但温度的继续上升会使磁能积下降(图 3c)。 如前所述,合金组织中存在 2 种磁性相:铁磁性的 Mn_{0.85}Ga_{0.15}相和亚铁磁性的 Mn₃Ga 相,其中 Mn₃Ga 相 的剩磁较高,但矫顽力较小,而 Mn_{0.85}Ga_{0.15}相的剩磁 较小,矫顽力较大^[25]。在图 3a 中,385,400 和 415 ℃ 样品的磁滞回线在第 2、4 象限出现了拐点,表明 2 种 磁性相的磁交换耦合作用减弱。磁交换耦合与磁性相的 纳米晶粒尺寸有关,过高的退火温度可能引起晶粒尺寸 增大,当其大于磁交换耦合长度时,磁交换耦合作用将 下降。

选择保温温度 385 ℃,考察不同的保温时间对磁性 能的影响,结果如图 4 所示。在保温时间 6 h 以下的区 间,保温时间的提高有利于提升磁滞回线的面积,磁滞 回线的端部也随保温时间的延长而提高,表明饱和磁化 强度升高(图 4a)。矫顽力随着保温时间的变化不明显, 在 578~648 kA/m 范围内波动,当保温时间为 6 h 时,矫 顽力达到最大值 648 kA/m;剩磁先随着保温时间的增加 而上升,在 6 h 达到最大值 63.21 kA/m,之后稍有下降(图 4b)。Mn-20Ga 合金的磁能积(*BH*)_{max} 先随着保温时间的 增加而上升,在 6 h 达到最大值 1.2 kJ/m³,保温时间的 继续增加会使磁能积下降(图 4c)。

2.3 纳米晶粒尺寸对矫顽力的影响

纳米晶磁性材料的矫顽力受磁性颗粒尺寸的影响^[26], MnBi、Fe₃O₄等多种磁性材料的矫顽力随着颗粒 尺寸的减小而增大^[27]。这是因为当颗粒的尺寸远大于单 畴临界尺寸时,颗粒处于多畴状态,矫顽力由畴壁位移 决定,其值比较小。而当颗粒尺寸减小到单畴临界值附 近时,磁化是转动过程,矫顽力较大。

根据不同的晶粒尺寸范围, 矫顽力 H_c与晶粒尺寸 D 的关系如下^[28]:

$$H_{\rm c} = p_{\rm c} \frac{K_1^4 D^6}{J_{\rm s} A^3} \tag{1}$$

$$H_{\rm c} = p_{\rm c} \frac{\sqrt{AK_1}}{J_{\rm c}D} \tag{2}$$

式中, K₁为磁晶各向异性常数, p_c为微结构因子,是无 量纲常数,取决于材料的微结构和磁化过程,A 为交换 积分; Js 为磁饱和极化强度。当晶粒尺寸比磁交换耦合 的长度小时,矫顽力由式(1)决定,H_c∝D⁶,矫顽力会随 着晶粒尺寸的减小而快速下降。而当晶粒尺寸大于磁交 换耦合长度时,矫顽力由式(2)决定,H_c∝D¹,矫顽力随 着晶粒的减小而增大。

根据 XRD 的结果可分析本实验 Mn-Ga 合金中的纳 米晶尺寸,晶粒的尺寸可影响对应相在 XRD 图谱中的 峰宽,可通过谢乐公式计算纳米晶尺寸^[29]:

$$D = \frac{K\lambda}{\beta\cos\theta} \tag{3}$$

式中,D为晶粒的尺寸, λ 为X射线波长(λ =0.154 056 nm), β 为衍射峰半高宽, θ 为布拉格角,K 为谢乐常数 (K=0.89)。XRD 结果的计算表明,高能球磨合金中 Mn 相的晶粒细化显著, 球磨后纯 Mn 的晶粒尺寸约为 11.72 nm, 在 300 ℃热处理后纯 Mn 晶粒尺寸增加至 27.24 nm, 热处理所生成的 Mn-Ga 化合物同样达到了纳 米级的尺寸,图 5 给出了 Mn₃Ga 相与 Mn_{0.85}Ga_{0.15}相的 尺寸随退火条件的变化。不同条件的热处理样品中, Mn₃Ga的晶粒尺寸分布范围为 10.89~13.66 nm (图 5a), 随热处理时间的变化较小(图 5b);在退火温度小于 400 ℃的范围内, Mn₃Ga 的晶粒尺寸随着退火温度的上 升而减小,但幅度较小(图 5a)。Mn_{0.85}Ga_{0.15}的晶粒尺 寸分布范围为14.8~27.4 nm(图 5b),随着保温时间的 增加而降低(图 5b)。对于不同的保温温度,在 370 ℃ 以下 Mn_{0.85}Ga_{0.15} 晶粒尺寸随保温温度的上升而减小,而 在 370 ℃以上则随保温温度的上升而上升(图 5a)。

Mn-Ga磁性复合材料的2种磁性相分别为铁磁性的

Fig.4 Magnetic properties of the Mn-20Ga composites annealed at 385 °C for various time: (a) hysteresis loops, (b) remanence and coercivity, and (c) energy product (*BH*)_{max}

图 5 不同退火条件下 Mn-20Ga 合金中的磁性纳米相尺寸

Fig.5 Grain size of the magnetic nanophase in Mn-20Ga alloys at various annealing temperatures for 4 h (a) and at 385 °C for various annealing time (b)

Mn_{0.85}Ga_{0.15}相(β-Mn),以及亚铁磁性的 Mn₃Ga 相。由本 研究 Mn-Ga 合金中的纳米晶尺寸随退火条件的变化规 律,以及磁性能在不同退火条件下的变化规律可知:在 退火温度 385 ℃以下,随着退火温度的上升,2种磁性 相 Mn₃Ga 与 Mn_{0.85}Ga_{0.15} 晶粒尺寸均下降,而矫顽力同 时上升。此外,在退火时间6h以下,随着退火时间的 延长, Mn_{0.85}Ga_{0.15} 晶粒尺寸下降, 剩磁上升。这符合式 (2)的规律,表明本实验中的磁性相晶粒尺寸大于磁交换 耦合长度,通过降低 Mn_{0.85}Ga_{0.15} 的晶粒尺寸促进了磁性 能的提升。而当晶粒尺寸增大,大于磁交换耦合长度时, 在晶粒表面存在交换耦合作用,晶粒内部不存在交换耦 合作用^[30]。磁交换耦合作用的降低可体现在磁滞回线 上,在退火温度过高(图 3a: 385, 400 和 415 ℃),或者退 火时间不足时(图 4a: 2, 4 h),因为 Mn_{0.85}Ga_{0.15}相的晶粒 尺寸变大(图 5), 会使磁交换耦合作用减弱, 从而对应了 磁滞回线上的拐点出现。

3 结 论

未退火的 Mn-20Ga 合金主要组成相为纯 Mn 与
 纯 Ga,退火后合金中生成了铁磁性的 Mn₃Ga 相和亚铁
 磁性的 Mn_{0.85}Ga_{0.15} 相,以及氧化导致的少量 MnO₂ 相。
 退火组织中的 Mn₃Ga 相与 Mn_{0.85}Ga_{0.15} 相分别源于退火

前组织中的高 Ga 含量区与低 Ga 含量区。

2) 退火温度的适当升高可促进剩磁、矫顽力与磁能积的提高,在385℃时退火可获得较佳的磁性能。退火时间延长至6h可将剩磁与磁能积提高至最大值,但矫顽力随退火时间的变化较小。

3) Mn₃Ga 纳米相尺寸随热处理条件的变化较小,但 通过适当提高保温温度和延长保温时间,可降低 Mn_{0.85}Ga_{0.15} 纳米相的尺寸,与矫顽力升高的趋势相一致。 表明在 Mn-Ga 纳米磁性材料中可通过降低 Mn_{0.85}Ga_{0.15} 的晶粒尺寸促进磁性能的提升。

参考文献 References

- Grujić A, Talijan N, Stojanović D et al. Journal of Mining and Metallurgy[J], 2010, 46(1): 25
- [2] Pan Shuming(潘树明). Strong Magnet-Principle, Manufacture and Application of Rare Earth Permanent Magnetic Material(强 磁体-稀土永磁材料原理、制造与应用)[M]. Beijing: Chemical Industry Press, 2011: 387
- [3] Zhong Buqing, Wang Lingqing, Liang Tao et al. Atmospheric Environment[J], 2017, 167: 40
- [4] Fingers R T, Rubertus C S. IEEE Transactions on Magnetics[J], 2000, 36(5): 3373
- [5] Minakuchi K, Umetsu R Y, Kobayashi K et al. Journal of Alloys and Compounds[J], 2015, 645: 577
- [6] Saito Tetsuji, Nishimura Ryuji. Journal of Applied Physics[J], 2012, 112(8): 83 901
- [7] El-Gendy A A, Hadjipanayis G. IEEE Transactions on Magnetics[J], 2014, 50(11): 1
- [8] Wu Feng, Mizukami Shigemi, Watanabe Daisuke *et al. Applied Physics Letters*[J], 2009, 94(12): 122 503
- [9] Kunimatsu K, Suzuki K Z, Mizukami S. Journal of Crystal Growth[J], 2019, 514: 8
- [10] Feng J N, Liu W, Gong W J et al. Journal of Materials Science & Technology[J], 2017, 33(3): 291
- [11] Zhu Lijun, Nie Shuaihua, Meng Kangkang et al. Advanced Materials[J], 2012, 24(33): 4547
- [12] Zhang Fangfang, Xie Zhiwei. Rare Metal Materials and Engineering[J], 2012, 41(2): 663
- [13] Cui Baozhi, Liu Xubo, King Alexander H et al. Acta Materialia[J], 2020, 196: 528
- [14] Özt ürk Sultan, İcin Kürşat, Özt ürk Bülent et al. Metallurgical and Materials Transactions A[J], 2017, 48(10): 5017
- [15] Wang Wei(王伟), Ma Tianyu(马天宇), Luo Wei(罗伟) et al.
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2008, 37(6): 1081

- [16] Xie Wei, Polikarpov Evgueni, Choi Jung-Pyung et al. Journal of Alloys and Compounds[J], 2016, 680: 1
- [17] Bither Tom A, Cloud William H. Journal of Applied Physics[J], 1965, 36(4): 1501
- [18] Niida Hiroshi, Hori Tomiei, Onodera Hideya et al. Journal of Applied Physics[J], 1996, 79(8): 5946
- [19] Hakimi M, Venkatesan M, Rode K et al. Journal of Applied Physics[J], 2013, 113(17): 17B101
- [20] Cui B Z, Marinescu M, Liu J F. IEEE Transactions on Magnetics[J], 2013, 49(7): 3322
- [21] Lu Q M, Wang D J, Li H F et al. Journal of Magnetism and Magnetic Materials[J], 2020, 510: 166 883
- [22] Mix T, Müller K H, Schultz L et al. Journal of Magnetism and Magnetic Materials[J], 2015, 391: 89

- [23] Brown Daniel R, Han Ke, Siegrist Theo et al. AIP Advances[J], 2016, 6(5): 56 012
- [24] Zhang Lin, Xu Naikang, Chen Menglong *et al. JOM*[J], 2020, 72(8): 2826
- [25] Brown Daniel R, Han Ke, Siegrist Theo. Journal of Applied Physics[J], 2014, 115(17): 17A723
- [26] Feng Weicun(冯维存), Gao Ruwei(高汝伟), Li Wei(李 卫). Acta Metallurgica Sinica(金属学报)[J], 2005, 41(4): 347
- [27] Jin Hanmin(金汉民). Physics of Magnetism(磁性物理)[M]. Beijing: Science Press, 2013: 206
- [28] Herzer G. IEEE Transactions on Magnetics[J], 1990, 26(5): 1397
- [29] Scherrer P. Nachr Ges Wiss Gottingen[J], 1918, 26: 98
- [30] Arcas J, Hernando A, Barandiaran J M et al. Physical Review B[J], 1998, 58(9): 5193

Fabrication and Magnetic Properties of Mn-20Ga Nanocomposite Magnetic Materials

Zhang Lin¹, Chen Menglong^{1,2}, Gao Yulong², Zhao Chenxi², Wei Haoyu², Liang Ning², Wang Engang¹

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China)
 (2. School of Metallurgy, Northeastern University, Shenyang 110819, China)

Abstract: The Mn-Ga alloy displays high coercivity and a relatively large magnetic anisotropy. These characteristics suggest that it is a good potential magnetic material for the future. Herein, we prepared Mn-20Ga (at%, the same below) nanocomposite magnetic materials through mechanical alloying using high-energy ball milling. The samples were annealed at a temperature range from 300 °C to 415 °C for a holding time range from 2 h to 8 h. This study focused on the variation of magnetic phases types, nanocrystalline size and magnetic properties with annealing conditions. The results show that the main phases of the unannealed Mn-20Ga alloy are pare Mn and Ga, the main magnetic phases in Mn-20Ga magnetic material after annealing are nano-sized Mn₃Ga and Mn_{0.85}Ga_{0.15}, in addition to a small amount of MnO₂ phase caused by oxidation. The remanence, coercivity, and maximum magnetic energy product can be improved by enhancing the annealing temperature into a proper range. Extending the annealing time properly is also beneficial to the improvement of remanence and maximum magnetic energy product. The optimal magnetic properties in this research are obtained at annealing temperature of 385 °C for 6 h, which show a remanence of 63.21 kA/m, a coercivity of 648 kA/m, and a maximum magnetic energy product of 1.2 kJ/m³. The size of Mn_{0.85}Ga_{0.15} nanophase can be decreased by a proper enhancement of annealing temperature and annealing time, which corresponds to the increase of coercivity. The decrease of Mn_{0.85}Ga_{0.15} crystal size is beneficial to the enhancement of magnetic properties of the alloy.

Key words: Mn-Ga; nanoscale magnetic materials; high-energy ball milling; annealing; magnetic properties

Corresponding author: Zhang Lin, Ph. D., Distinguished Researcher, Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, P. R. China, Tel: 0086-24-83683985, E-mail: zhanglin@epm.neu.edu.cn